The Poisson distribution

If you have a lottery (Megamillions) and you sell 20,000,000 tickets, the probability of them all losing is given by:
(135,145,919/135,145,920)^20,000,000 = 0.862448363

A close approximation is given by:

e^-(20,000,000/135,145,920) = 0.8624413

I just learned this from a book. That's pretty cool!
 

HallsofIvy

Science Advisor
Homework Helper
41,709
876
I suggest that you go back and read that book again!

Did it say anything about where it got the figures
"135,145,919" and "135,145,920". For that matter, did it say anything about the legality of a lottery in which there is an 86% chance that EVERYONE loses?
 

chroot

Staff Emeritus
Science Advisor
Gold Member
10,166
34
Originally posted by HallsofIvy
For that matter, did it say anything about the legality of a lottery in which there is an 86% chance that EVERYONE loses?
I bet people would still play... ;)

- Warren
 
512
0
This is because ln(1+x) ~ x for small x.
=> ln[(k/(k+1))^n] = n ln [k/(k+1)] = n ln [1 - 1/(k+1)]
~ -n/(k+1)
=> (k/(k+1))^n ~ e^[-n/(k+1)].
See?

However I'm puzzled because it doesn't say how many tickets there are in total. Don't we have to know this to figure out the 135,145,919?
 
Last edited:

russ_watters

Mentor
18,839
5,030
did it say anything about the legality of a lottery in which there is an 86% chance that EVERYONE loses?
Ever hear of PowerBall?
 
3,073
3
arcnets
This is because ln(1+x) ~ x for small x
At face value this doesn't seem like a good approximation for some similar applications, like 1/(1-ln(1+x)) where x=1.
 
512
0
Loren Booda, by 'small x' I meant |x| << 1. So it's not valid for x=1, of course.
 

damgo

I assume there are 135,145,920 possible numbers/choices, with one chosen as the winner.

The rules say there is a power-number 1-52, and 5 distinct numbers 1-52 which can be in any order. So that's 52 * 52! / (5!*47!) , which is right.
 
3,073
3
mea culpa, arcnets
 

Related Threads for: The Poisson distribution

  • Posted
Replies
3
Views
3K
Replies
3
Views
745
  • Posted
Replies
3
Views
2K
  • Posted
Replies
1
Views
2K
Replies
1
Views
691
Replies
1
Views
7K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top