The relation between the normal and the slope of a cylindrical curve

baby_1
Messages
159
Reaction score
16
As you can see in this picture:
pAyHm.jpg
This explanation "relation between the normal and the slope of a curve" is formulated here:

$$\frac{1}{\rho} \frac{d\rho }{d\psi }=\tan\left(\frac{\theta+\psi}{2}\right)$$

I got confused because I don't have the curve equation(regarding the slope of the curve and normal vector) and I am curious to know how the above equation is derived.

First I assume that the normal vector on cylindrical curve is going to obtain via gradian operator:
$$\bigtriangledown F=\frac{\partial F }{\partial r}\hat{ar}+\frac{\partial F }{r\partial \phi}\hat{\phi}+\frac{\partial F }{\partial z}\hat{az}$$
but I don't have the F function, and as you can see the above question the writer assume F as $$\rho$$ that I don't understand where it comes from and why the writer used the only phi component.

I will be grateful if you could help me to obtain the formula based on the curve coordinates.
 
Physics news on Phys.org
@baby_1 what has this to do with textbooks? :wideeyed:
 
Thank you Malawi_glenn,
Yes, it seems the administrators changed the group of my question. My question is part of an article instead of a textbook.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top