Don't be sorry man :) Those questions are good, and tricky.
You have 'black body radiation' and 'the photoelectric effect' defining light as quanta. And the modern way of discussing it is a lot like yours, referring to photons frequency for example. I wrote this somewhere else, but it might help see how I look at it
I'm getting very confused reading you, it's easy to define a photon. It's intrinsically timeless, massless, expends no energy in its 'propagation', always following geodesics. Has no charge, meaning that it does not bend to any electric field. Will leave a recoil as it propagates from a source, due to the demand of symmetry of 'conservation of momentum'. Does not exist until measured, that just means that if compared to a ball coming at you in the air, a photon is no ball and does - NOT - leave itself to being observed, except in its annihilation.
It has no acceleration, can't be defined as having a 'rest frame' as it never can be 'at rest', always moving at the invariant speed of 'c'. Unchanging in, and from, any frame measured. It is one part of the wave/particle duality that signifies light/radiation. Although some, using strategically placed out clocks in a accelerating frame, may find 'c' to be questionable comparing A-B against B-A that is a expression of 'gravity' acting on the clocks, as per Einsteins GR (equivalence principle). Even if ignoring that you will find light to always show 'c' locally, when measured. And if you want to discuss the whole spectrum use 'radiation' please. Leave hypothesizes outside the definitions, you might want to make a section called 'alternative hypothesizes' if you can't control those introducing 'pilotwaves', quantum teleportations, tunnelings, entanglements and whatever..
As Birge said "I understand what people are getting at when they want to say a photon can be expressed by a 3D k-vector and a polarization state, but nobody has offered a good explanation of why it's helpful to readers to consider the number of free parameters in a spatially infinite plane wave to be the degrees of freedom of a single photon." It would be highly theoretical, not defined experimentally, and embarrassingly stupid to put such into a factual description of what we think us to actually 'know' about a photon. A photon does not exist, except in the recoil, aka symmetry with SpaceTime, and in its subsequent annihilation. The ball can also be defined this way actually, if you consider what communicates its motion, namely 'light'. But that would just mess with peoples heads. Concentrate on what we know, not what we guess.
"What exactly is the nature of the photon's frequency" The photon does not have a frequency. It has a energy, but that energy can through Einstein explanation of the photoelectric effect, via Planck's constant 'h', (E=hf) be presented as that 'e'nergy of a photon is proportional to a waves 'f'requency. So there is a equivalence through that. And equivalences and symmetries are important phenomena in SpaceTime, but intensity and amplitude doesn't apply to a single photon at all. If you look at Maxwell's equations light becomes a electromagnetic radiation consisting of oscillations (waves) in the electric and magnetic fields, 'perpendicular' (at a right angle) to each other. Waves describe polarization, refraction, interference (quenching and reinforcing itself, via two waves interfering) etc, but they do not tell you about photons. And that's where 'equivalences' becomes important. And so this, to me that is, is all about trying to find a common ground for the concept of photon fitting the concept of waves. This is a good description of that.
"The frequency of the oscillations in a beam of light is proportional to the energy in each photon, as demonstrated by the photoelectric effect, and in the case of light is related to the color of the light. The intensity of the beam is proportional to the number of photons. The polarization of light (that is explained by Maxwell) is related to the quantum-mechanical concept of spin. You can see the photon as a little top spinning around an axis that coincides with the direction of propagation. But while in classical mechanics an object can spin only in one direction at a time, in quantum mechanics you have the paradoxical and counter-intuitive fact that an object can spin let's say clockwise and counterclockwise at the same time.
It is like having two "realities" existing at the same time. It takes a while to get used to this new idea and to accept it. A photon spinning in one direction corresponds to a rotating electric field, and to what is called circular polarization. A photon that spins in both directions at the same time gives you, under the right circumstances, plane polarization, which means the electric field is oriented always in the same direction."
Two realties huh :) Or a particle/wave duality