The Value of |xyz| Given x, y, and z

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Value
Click For Summary

Discussion Overview

The discussion revolves around the equation $$x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}$$ with the goal of determining the value of $$|xyz|$$ given that $$x$$, $$y$$, and $$z$$ are distinct non-zero real numbers. The scope includes mathematical reasoning and problem-solving approaches.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes a solution involving the equation $$ (y-z)(yz-z+1)(yz+z+1)=0 $$ and discusses the difficulty of simplifying it into a product of three factors.
  • Another participant suggests that the uniqueness of the solution implies that $$ |xyz| = |abc| $$, leading to the conclusion that $$ |xyz| = 1 $$.
  • Some participants engage in light-hearted banter about the difficulty of the problem and the nature of their contributions.

Areas of Agreement / Disagreement

There is no clear consensus on the value of $$|xyz|$$, as participants present differing approaches and reasoning. The discussion remains unresolved regarding the validity of the proposed solutions.

Contextual Notes

The discussion includes various assumptions about the distinctness and non-zero nature of the variables, as well as the uniqueness of the solution, which may not be fully explored or agreed upon.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $$x,\;y,$$ and $$z$$ be distinct non-zero real numbers such that $$x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}$$.

What is the value of $$|xyz|$$?
 
Mathematics news on Phys.org
My solution:

Let's begin with:

$$x+\frac{1}{y}=y+\frac{1}{z}$$

Solving this for $x$, we obtain:

$$x=\frac{y^2z+y-z}{yz}$$

Next, taking:

$$y+\frac{1}{z}=z+\frac{1}{x}$$

and solving this for $x$, we get:

$$x=\frac{z}{yz+1-z^2}$$

Hence, we may equate the two expressions for $x$ to get:

$$\frac{y^2z+y-z}{yz}=\frac{z}{yz+1-z^2}$$

Simplifying, we get:

$$(y-z)\left(yz-z+1 \right)\left(yz+z+1 \right)=0$$

Since $y$ and $z$ must be distinct, we are left with:

$$\left(yz-z+1 \right)\left(yz+z+1 \right)=0$$

Using the first factor, we obtain:

$$z=\frac{1}{1-y}$$

and so we find:

$$x=\frac{y-1}{y}$$

Hence:

$$|xyz|=\left|\frac{y-1}{y}\cdot y\cdot\frac{1}{1-y} \right|=|-1|=1$$

The same result is obtained from the other factor.
 
MarkFL said:
My solution:

Let's begin with:

$$x+\frac{1}{y}=y+\frac{1}{z}$$

Solving this for $x$, we obtain:

$$x=\frac{y^2z+y-z}{yz}$$

Next, taking:

$$y+\frac{1}{z}=z+\frac{1}{x}$$

and solving this for $x$, we get:

$$x=\frac{z}{yz+1-z^2}$$

Hence, we may equate the two expressions for $x$ to get:

$$\frac{y^2z+y-z}{yz}=\frac{z}{yz+1-z^2}$$

Simplifying, we get:

$$(y-z)\left(yz-z+1 \right)\left(yz+z+1 \right)=0$$

Since $y$ and $z$ must be distinct, we are left with:

$$\left(yz-z+1 \right)\left(yz+z+1 \right)=0$$

Using the first factor, we obtain:

$$z=\frac{1}{1-y}$$

and so we find:

$$x=\frac{y-1}{y}$$

Hence:

$$|xyz|=\left|\frac{y-1}{y}\cdot y\cdot\frac{1}{1-y} \right|=|-1|=1$$

The same result is obtained from the other factor.

Thanks for participating again in my challenge problem, MarkFL and I think to expand and verify this

$$(y-z)\left(yz-z+1 \right)\left(yz+z+1 \right)=0$$

$$\therefore \frac{y^2z+y-z}{yz}=\frac{z}{yz+1-z^2}$$

to be true is easy, but to contract it to become a product of three factors...that is much more difficult, and so I'll deduct 2 marks from you for this...hehehe...
 
anemone said:
...so I'll deduct 2 marks from you for this...hehehe...

Ouch! Dan was right...(Giggle)

I figured I could leave the drudgery of the details to the reader...you know, like a good textbook. (Wasntme)
 
MarkFL said:
Ouch! Dan was right...(Giggle)

Oh Dan...is he your buddy?(Tongueout)

MarkFL said:
I figured I could leave the drudgery of the details to the reader...you know, like a good textbook. (Wasntme)

Hahaha...this cracks me up!
emo31.gif
 
x+1/y=y+1/z=z+1/x. ...(1)

this question would not have been asked has the solution not been unique

now putting 1/a for z , 1/b for x and 1/c for y we get

1/b + c = 1/c + a = 1/a + b

the above equation is same as (1) with c for x b for y and a for z and hence

|xyz| = |abc| as the value is unique

= | 1/z 1/x 1/y| = | 1/xyz|

so |xyz| = 1
 

Similar threads

Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K