Thermodynamic Systems - Volume, Final Pressure and Final Temperature

Click For Summary
SUMMARY

The discussion focuses on calculating the initial volume, final pressure, and final temperature of a thermodynamic system involving 0.12 kg of air with an initial temperature of 500°C and pressure of 0.8 MPa. The initial volume was recalculated to be 33 liters after correcting the formula and unit conversion. The final pressure was determined to be 240,002.4 Pa, while the final temperature was accurately calculated as 627.1 K (354.1°C) using the ideal gas law. The importance of consistent units and proper mathematical operations was emphasized throughout the discussion.

PREREQUISITES
  • Understanding of the Ideal Gas Law (PV = mRT)
  • Knowledge of thermodynamic principles related to pressure and volume
  • Familiarity with unit conversions, especially between cubic meters and liters
  • Basic algebra for rearranging equations and performing calculations
NEXT STEPS
  • Study the Ideal Gas Law and its applications in thermodynamics
  • Learn about unit conversion techniques for volume and pressure
  • Explore advanced thermodynamic concepts such as adiabatic processes
  • Practice solving thermodynamic problems using real-world scenarios
USEFUL FOR

Students and professionals in engineering, physics, and applied sciences who are looking to deepen their understanding of thermodynamic systems and calculations involving gases.

Lewishio
Messages
19
Reaction score
2
Homework Statement
I have had a go at the following question but have gone wrong somewhere, any ideas?

A mass of 0.12 kg of air has an initial temperature of 500°C and pressure 0.8 MPa. If the air is
expanded according to the law pV1.2 = c to a final volume of 90 litres, determine

i) its initial volume,
ii) its final pressure,
iii) its final temperature.

For air, take R = 287 Jkgˉ¹ Kˉ¹.
Relevant Equations
pV = mRT
V = mRT/P
T = PV/mR
Mass = 0.12kg
Initial temp = 500°c = 773K
Initial pressure = 0.8 MPa = 800,000 Pa
Final volume = 90L
R = 287 Jkg^-1K^-1

1) Initial Volume

V=mRT/P

0.12 x 287 x 773 / 800,000 = 26,662.12m^3

2) Final Pressure

P2 = P1P2^1.2/V2^1.2

800,000 x 26,662.12^1.2 / 90 = 1,816,095,330 Pa = 1,816 MPa

3) Final Temperature

T=P2V2^1.2/mR

1,816,095,330 x 90 / 0.12 x 287 = 1,291 x 10^11 K
 
Physics news on Phys.org
Lewishio said:
Problem Statement: I have had a go at the following question but have gone wrong somewhere, any ideas?

A mass of 0.12 kg of air has an initial temperature of 500°C and pressure 0.8 MPa. If the air is
expanded according to the law pV1.2 = c to a final volume of 90 litres, determine

i) its initial volume,
ii) its final pressure,
iii) its final temperature.

For air, take R = 287 Jkgˉ¹ Kˉ¹.
Relevant Equations: pV = mRT
V = mRT/P
T = PV/mR

Mass = 0.12kg
Initial temp = 500°c = 773K
Initial pressure = 0.8 MPa = 800,000 Pa
Final volume = 90L
R = 287 Jkg^-1K^-1

1) Initial Volume

V=mRT/P

0.12 x 287 x 773 / 800,000 = 26,662.12m^3
You forgot to divide by 800000, and you forgot to convert to liters.
 
  • Like
Likes   Reactions: Lewishio
Hi,

Thank you, how does this look? I think there is a problem with the formula for the final temperature as my answer is not correct.

1) Initial Volume

V=mRT/P
0.12 x 287 x 773 / 800,000 = 0.033m^3

Convert to litres:
0.033 x 1000 = 33L

2) Final Pressure

P2 = P1V1^1.2 / V2^1.2
800,000 x 33^1.2 / 90^1.2 = 240,002.4 Pa

3) Final Temperature

T = PV^1.2 / mR
240,002.4 x 90^1.2 / 0.12 x 287 = 1.27 x 10^11 K
 
Lewishio said:
Hi,

Thank you, how does this look? I think there is a problem with the formula for the final temperature as my answer is not correct.

1) Initial Volume

V=mRT/P
0.12 x 287 x 773 / 800,000 = 0.033m^3

Convert to litres:
0.033 x 1000 = 33L

2) Final Pressure

P2 = P1V1^1.2 / V2^1.2
800,000 x 33^1.2 / 90^1.2 = 240,002.4 Pa

3) Final Temperature

T = PV^1.2 / mR
240,002.4 x 90^1.2 / 0.12 x 287 = 1.27 x 10^11 K
The final temperature is incorrect. You should be using the ideal gas law. You should be using consistent units with the volume. And you should learn how to do math using parenthesis for the denominator.
 
  • Like
Likes   Reactions: Lewishio
Hi,

I have had another go, how does this look?

PV=mRT rearranged to T= PV/mR

(240,002.4Pa x 0.09m^3) / (0.12kg x 287 Jkg^-1K^-1) = 627.1K = 354.1°c
 
  • Like
Likes   Reactions: Chestermiller

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 26 ·
Replies
26
Views
7K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
32K