Urmi Roy said:
1. Thermodynamic equilibrium requires mechanical equilibrium--please explain.
Consider a pressurized tank of air (gas). Now this tank of gas is the same temperature as outside air, so if it was in equilibrium it wouldn't leak under pressure, unless it's not only in thermal equilibrium, but also in mechanical equilibrium. At a fundamental level there's not much difference. Open the valve till all the air leaks out, then heat it and more air leaks out under pressure.
The pressurized tank is not in equilibrium because the gas is denser, due to more mechanical impacts of the molecules. Once in mechanical equilibrium, then heating the tank adds velocity to the gas particles. Now the gas molecules are not in equilibrium, not because there is more, but because they are hitting harder and faster than the molecules outside.
Urmi Roy said:
2.How many state variables (Voume,pressure,temperature etc.) are needed to specify a thermodynamic system?
That depends on exactly what you want to specify. Pressure, volume, and temperature is enough for an ideal gas. Temperature is basically the average kinetic energy, 1/2Mv^2, of the molecules. Changing density also changes volume, and temperature due to the kinetic energy of the particles being closer together, thus more energy per volume.
Urmi Roy said:
3. In order for Boyle's law to be applicable to a process,does the process need to be quasi static and (or) isothermal?(Referring to this,the main thing is--is an isothermal process always quasi static?)
Yes, the temperature is what's defined to stay static in Boyle's law, but the pressure and volume are inversely related. So Boyle's law does not require constant pressure and volume, only temperature, but the ratio of pressure and volume will stay constant though.
Urmi Roy said:
4.What kind of factors does continuum volume (the minimum volume needed to obtain a continuum in the system) depend upon?
This is a more difficult question. It really doesn't make much sense to talk about the temperature of a single particle, though you can define its kinetic energy. The volume doesn't really matter either, but the fewer particles there are the bigger the volume you need to average over to make sense. So primarily it depends on an area big enough so that averaging the kinetic energy of the molecules in it will give you a true average. It's like asking what the average shoe size is. You can't learn that from 1 shoe.
Urmi Roy said:
5. why is density a thermodynamic quantity?(It says so in my book).
For the same reason I described in question 1. If you compress more gas closer together, then the average kinetic energy per unit volume increases, because the kinetic energy of the molecules are closer together. Increasing temperature also increases the average kinetic energy per unit volume, not by more particles with kinetic energy closer together, but by adding more kinetic energy per particle.
Urmi Roy said:
6. What is the significance of classifying systems into 'open','closed' and 'isolated' systems?(I mean in real life,do we consider them while performing adiabatic/isothermal/isochoric processes?)
An open and isolated system are opposites. A closed system is a bit different. An isolated system cannot exchange any parts or energy with anything outside that system. A heated gas that can't interact with anything outside that gas can never heat up or cool down, if the volume stays the same. Insulation is an attempt to isolate the air system in a house. It's never perfect under any circumstances. An open system is the opposite and allows parts and energy in and out of the system.
Now a closed system is when no parts are allowed in or out of the system, but energy is. The freon in an air conditioner is 'enclosed', but is what is used to transfer heat out of your house. That's what the big coils outside the house is for, as a heat exchanger.
Urmi Roy said:
7. Lastly,what is the difference between the Helmoltz equation and gibb's equation(just basic idea required).
The is very rough, but basically the Helmholtz equation separates two variables to each side of an equation such that both side are equal to some constant. This allows you to separate those variables into two separate equations, both equal to that constant. It's useful for defining angular frequency in linear trig functions, Fourier transforms, etc., depending on which form you use. I assume, when you say Gibbs equation you mean the Gibbs–Helmholtz equation. It simply defines the change in Gibbs energy as temperature changes.
These last concepts need a better understanding of the previous questions. It would be best to learn how and why the equation of state of an ideal gas are manipulated the way they are. With 3 variables you can hold one of them constant to see how the other two work together. Then choose another variable to hold constant and learn how another pair of variables work together. When you learn how any combination of two variables work together, you can start treating all 3 as variables. That's how you learn about the answers to these questions you are asking.