Thermodynamics? number crunching thermal conductivity

AI Thread Summary
The discussion focuses on calculating heat transfer from polyethylene (PE) pipe, specifically converting thermal conductivity from W/(m·C) to BTU/(hr·ft·F). The thermal conductivity of the PE pipe is approximately 0.46 W/(m·C), which converts to about 0.266 BTU/(hr·ft·F). To determine the heat load (Q) for 10 square feet of PE pipe with a temperature difference (dT) of 10°F, the formula Q = k/d * ΔT * A is suggested, where k is the thermal conductivity and d is the wall thickness. The wall thickness of 0.120 inches must be converted to feet for accurate calculations. The final calculation indicates that using the correct units leads to a heat transfer rate of approximately 2.22 BTU/hr per square foot per degree Fahrenheit.
fastline
Messages
22
Reaction score
0
I am working on some basic calcs for heat transfer from polyethylene pipe. My numbers are not working out right so I need a little refresher.

The PE pipe would have a TC of about .46 W/(m.*C). to get to BTU/(hr.ft.*F), I mult by .5779 to get .266.

Assuming 10sf of PE pipe, and let's say a dT of 10*F, how do I arrive at my BTU/hr? Wall thickness of piping is .120" but I am told that does not matter. IIRC, the unit is actualy per sf PER ft so I might actually divide by my thickness which gets me closer at around 2.22 BTU/hr/sf*F of pipe?
 
Science news on Phys.org
fastline said:
I am working on some basic calcs for heat transfer from polyethylene pipe. My numbers are not working out right so I need a little refresher.

The PE pipe would have a TC of about .46 W/(m.*C). to get to BTU/(hr.ft.*F), I mult by .5779 to get .266.

Assuming 10sf of PE pipe, and let's say a dT of 10*F, how do I arrive at my BTU/hr? Wall thickness of piping is .120" but I am told that does not matter. IIRC, the unit is actualy per sf PER ft so I might actually divide by my thickness which gets me closer at around 2.22 BTU/hr/sf*F of pipe?

The formula for the heat load Q (BTU/hr) is:
Q=\frac{k}{d}ΔTA
where d is the wall thickness.
 
I guess I am second guessing the units here. Would you mind applying the math to my above figures? Would this indeed be

k=.266
d=.120

k/d = 2.22BTU?
 
fastline said:
I guess I am second guessing the units here. Would you mind applying the math to my above figures? Would this indeed be

k=.266
d=.120

k/d = 2.22BTU?
You need to use d expressed in feet. How many inches are there in 1 ft?
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
Back
Top