MHB This is sampling distribution can you help me with this problem

Click For Summary
The discussion revolves around calculating the probability that the total weight of 10 randomly selected goats exceeds 650 kg, given that their weights are normally distributed with a mean of 60 kg and a standard deviation of 10 kg. The standard normal distribution value is calculated, leading to a z-score of 0.5 for the weight limit of 65 kg. Participants express confusion about the request for just the answer without an interest in understanding the problem-solving process. The conversation also includes a humorous remark about the need for goat transportation. Understanding the statistical concepts is emphasized as crucial for solving such problems effectively.
Cute aq
Messages
1
Reaction score
0
1. The weight of goats at a farm is normally distributed with a mean of 60 kg and a standard deviation of 10 kg. A truck used to transport goats can only accommodate not more than 650 kg. If 10 goats are selected at random from the population, what is the probability that the total weight exceeds the maximum weight?
PS: I JUST NEED THE ANSWER AND SOLUTIONS
 
Mathematics news on Phys.org
Cute aq said:
1. The weight of goats at a farm is normally distributed with a mean of 60 kg and a standard deviation of 10 kg. A truck used to transport goats can only accommodate not more than 650 kg. If 10 goats are selected at random from the population, what is the probability that the total weight exceeds the maximum weight?
PS: I JUST NEED THE ANSWER AND SOLUTIONS
I am puzzled by this. If, as you appear to be saying, youare not interested in learning HOW to solve problems like this, why would you care about "the answer and solutions"?
 
Do you understand what a "normally distributed with mean of 60 kg and a standard deviation of 10 kg" MEANS?

If the weight of the goats is "normally distributed with mean of 60 kg and a standard deviation of 10 kg" then the "standard normal distribution" value corresponding to 650/10= 65 kg is (65-60)/10= 5/10= 1/2= 0.50. You can look up the probability on a table of the "standard normal distribution". There is a good one at Standard Normal Distribution Table.pdf (rit.edu) .
 
Last edited:
Country Boy said:
I am puzzled by this. If, as you appear to be saying, youare not interested in learning HOW to solve problems like this, why would you care about "the answer and solutions"?

maybe they just need to move some goats! :ROFLMAO:
 
Then they should go to a "goat transportation" board.