keepit said:
Assume you have observer #1 who emits one photon (can that even be done?) and an observer #2 who zips (at .01 c relative to observer #1) past observer #1 at the same moment that observer #1 emits the photon (observer #2's direction is the same as the direction of the photon). One year later is the photon 1 light year away from observer #1 and also 1 light year away from observer #2 and wouldn't that put the photon in two places at the same time?
Here's a spacetime diagram depicting the situation in observer #1's rest frame. Observer #1 is shown in blue and observer #2 is shown in black. The path of the photon is the thin blue line and after one year according to observer #1's clock, I have placed a green dot to show where it is (one light-year away or 12 light-months away). The other dots mark off one-month increments of time for the two observers:
Now to see what this looks like in observer #2's rest frame, we have to apply the Lorentz Transformation process to the events (dots) and we get:
As you can see in the above diagram, in observer #2's rest frame the photon has not yet arrived at one light-year away because he has moved closer to the green event so I have added a second red event which is one light-year away from observer #2 and extended the path of the photon:
And for completeness sake, we can transform this new event back into the rest frame of observer #1:
This really has nothing to do with Time Dilation or Length Contraction since at 0.01c gamma is 1.000050 and not observable on these diagrams. It only has to do with the assignment of the speed of light to be c in any inertial frame and light is not subject to Time Dilation or Length Contraction. In any case, using the Lorentz Transformation process on the coordinates of events in one inertial frame to see what they look like in a second inertial frame will always give you the correct coordinates.
And one other thing I want to point out, this also has nothing to do with any measurement. Once the photon is emitted, neither observer has any awareness or knowledge of where that photon is--they can't see it, it's simply a matter of applying Einstein's second postulate to any inertial reference frame, that the speed of light propagates at c.
Does this all make sense to you now?