Nereid said:
However, it sure would be nice if something specific could be predicted ahead of time (akin to Garth and SCC, re GPB)!
You want predictions relating to observable effects of vacuum polarization/densification? Here is a list I made some time ago.
1) Testing the Gravitational Mass of Matter vs. Antimatter
The Athena Project is designed to produce experimentally usable quantities of anti-hydrogen. One experiment is of particular interest – the measurement of the gravitational mass-equivalence of matter vs. antimatter. In my model, the quantum vacuum is polarized due to a differential in the gravitational infall rates of matter vs. antimatter. Particle-antiparticle pairs of the vacuum preferentially arise in the orientation that requires the least amount of energy, and if antiparticles are more strongly attracted to nearby mass than their partner particles, we have a mechanism by which the quantum vacuum (Einstein's gravitational ether) is polarized. The Polarized ZPE model is falsifiable by this mass-equivalence experiment, for without this gravitational mass differential, I cannot conceive of a simple universal mechanism by which the gravitational ether can interact with embedded masses.
2) Testing for the Existence of ZPE Field Polarization in Earth Orbit
I propose adding an experiment to an Earth-orbiting platform to test the strength of the Casimir effect in various orientations. Using a conventional Casimir device with parallel conducting plates, the device should be oriented with the plates parallel to an imaginary line drawn from the orbiter to earth. A second data run should be made with the conducting plates oriented perpendicular to that line. Each data run should consist of a large enough number of orbits to allow the effects of ZPE field fluxes caused by the Sun and the Moon to be extracted and compared. The Polarized ZPE field model predicts measurable differences in Casimir force as the device traverses gradients in the ZPE field caused by these massive bodies. Subject to instrument sensitivity, the Polarized ZPE model is falsifiable by this test.
3) Measuring the Speed of Light in a Casimir “Vacuum”
Casimir devices produce ZPE fields that are slightly under the local ground state by using very small gaps to physically suppress the appearance of some frequencies of the ZPE spectrum. This suppressed field is somewhat below the local ZPE ground state, although it is by no means a true quantum vacuum. I propose an experiment using interferometry to compare the speed of light across a Casimir gap to that of a beam crossing an equivalent vacuum with no ZPE suppression. The Polarized ZPE model’s concept that the speed of light is dependent on the density of the ZPE field through which is propagates is falsifiable by this test. GR’s invariable speed of light in a vacuum is also falsifiable by this test. (Note: A ZPE researcher kindly pointed out to me that this effect had already been predicted by Klaus Scharnhorst in 1990. My newness to the field has resulted in several such surprises, though I find it encouraging to have deduced a concept only to find that someone else has come to the same conclusion, often through another line of reasoning.)
4) WMAP Anisotropies Resulting from Motion Relative to the Vacuum Fields
WMAP's first year data contains interesting anisotropies. The dipole anisotropy is oriented with respect to our galaxy, and there are several strong multipole anisotropies. These anisotropies are due to our motion relative to the vacuum. Contributory motions include the passage of the MW through the vacuum (responsible for the large dipole anisotropy), the rotation of our spiral arm, the motion of the Sun through the spiral arm, and the motion of the Earth (and the WMAP probe at L2) around the Sun. When WMAP's second year is finally released, I predict that the dipole anisotropy and larger-scale anisotropies will be consistent with the first year data. The smaller anisotropies will not overlay properly, and when studied, they will be seen as artifacts of the WMAP probe's motion relative to the reference frame of the vacuum field. An antenna oriented in the direction of the probe's motion will sense a higher temperature, and one oriented toward the rear will sense a lower temperature. Even the very smallest anisotropies cover vast areas when projected to cosmological distances, as in the CMB. These vast areas cannot have conspired to change from one year to the next. If these small-scale anisotropies have not changed from WMAP1 to WMAP2, my ZPE model is falsified. If they have changed, the CMB is local, not cosmological.
5) Frequency-dependent Effects of the ZPE Fields on Light
Light propagating through ZPE fields should exhibit effects that are frequency-dependent. High frequency, short wavelength EM will be found to interact more strongly with the ZPE fields and will be slowed more than low-frequency, long wavelength EM. Observationally, the light curve of a distant astronomical source like a supernova should exhibit a stretched light-curve, with the low frequency EM arriving sooner on average than the high frequency EM. The spectra of long-lived objects of steady luminosity will appear normal, and frequency-dependent arrival times will not be measurable. The spectra and luminosity curves of objects that exhibit rapid changes in luminosity will be spread by the interactions of the EM with the ZPE fields. Perhaps the best objects to study for confirmation of this effect are gamma-ray bursters. Their light curves should exhibit a spectral smear in which long wavelength "forerunner" EM precedes gamma rays by an amount proportional to the distance from the source to Earth and the density of the ZPE fields traversed on that path.