Tien Len/ Thirteen Probability Question

  • Thread starter Thread starter markh26
  • Start date Start date
  • Tags Tags
    Probability
AI Thread Summary
A first-year Algebra II teacher is using the card game Tien Len to teach probability concepts, focusing on the differences between experimental and theoretical probability. The game involves players discarding their 13 cards by beating previous combinations, with the highest card being a 2, which can be countered by a "2 killer" such as a four of a kind or a double sequence. The teacher is confident in calculating the probability of a four of a kind but is uncertain about the double sequence probability, which consists of 11 different combinations. He shares his calculations for determining the probability of drawing a double sequence and arrives at approximately 20%, aligning with the experimental probabilities observed in gameplay. The teacher seeks feedback on his calculations to ensure they are understandable for high school students.
markh26
Messages
1
Reaction score
0
Hello,

I am a first year Algebra II teacher, and Probability is an Algebra II standard. I thought it would be fun to teach my students 13/Tien Len and then have them learn about probability after they are familiar with the game, for example the difference between experimental and theoretical probability.

If you are unfamiliar with 13, you have to get rid of your 13 cards as quickly as possible by beating combinations played be earlier cards. You get to lay down whatever combination you want whenever someone passes.

The highest ranking card is a 2. Whenever someone lays down a 2 though, they run the risk of it being beat by a "2 killer" which comes in 2 forms. A 4 of a kind, or a double sequence.

I'm confident of my 4 of a kind theoretical probability calculation, but the double sequence one I'm very unsure on. In fact it prompted me to find this great website.

A double sequence is like 33-44-55 all the way up though KK-AA-22. So I know there are 11 different double sequences you can get.

My calculation (I'm trying to do them w/o any formulas other than nCr or nPr as well since the kids I'm teaching it to, are not that strong in math, I'm teaching in an inner city school)

So can you please correct my work if possible.

I figured the chance of getting any particular card is 13/52 since everyone is dealt 13 cards. Then the chance of getting another particular card is 12/51. There are 6 combinations of any pair though so I used that in my calculation. (4c2 = 6)

So I multiplied (13/52 x 12/51 x 6) (11/50 x 10/49 x 6) (9/48 x 8/47 x 6) and then I multiplied that times 11 since there are 11 different double sequences. When I multiplied it all out I came out with a probability of around 20% which is close to the experimental probability my students are getting during our games.

I know the people that frequent this forum are my intellectual superiors, however can you please keep that in mind with your answer and dumb it down to the level that I could explain it to a hormone filled HS Sophmore or Junior? Thanks in advance, Mark
 
Mathematics news on Phys.org
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top