Time-Dependent Lagrangians: Reference Work & Euler-Lagrange Equations

  • Thread starter Thread starter StuckOnZero
  • Start date Start date
  • Tags Tags
    Lagrangians
StuckOnZero
Messages
4
Reaction score
1
I'm looking for a good reference work on time-dependent Lagrangians. For example, the Lagrangian and resultant Euler-Lagrange equations for a forced harmonic oscillator. All the classical textbooks just skip over this subject area. Obviously the system is non-energy conserving. In deriving the E-L equations one has to add a partial wrt T. I am looking to solve some electron trajectory problems when there is a weak oscillating external E-field.
-Thanks
 
Physics news on Phys.org
Your best bet will be a book on applied mechanics, either celestial mechanics, tokamak or particle accelerators.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Back
Top