JackAtl:
You appear to be thinking that Earth's gravity well, considered as a source of time dilation, is much stronger than it actually is. It's actually very weak. Even the Sun's gravity well isn't that strong, considered as a source of time dilation. So for an interstellar spaceship, there's almost no difference in clock rates due to being out of the gravity well of either the Earth or the Sun.
Just to give you the numbers: the time dilation factor at a given radius r from the center of a gravity well, relative to observers very far away, is given by
\gamma = \sqrt{1 - \frac{2 G M}{c^2 r}}
where M is the mass of the source, G is Newton's gravitational constant, and c is the speed of light. In SI units, G = 6.67 x 10^-11, and c^2 = 9 x 10^16. This is a general formula that will work for any gravity well, as long as the objects you are considering are at rest relative to one another.
For the surface of the Earth, M is 5 x 10^24 kg and r is 6.38 x 10^6 m, so
\gamma_{Earth} = \sqrt{ 1 - \left( 1.16 * 10^{-9} \right)} \approx 1 - \left( 5.8 * 10^{-10} \right)
For the Sun, at the distance of Earth's orbit, M is 2 x 10^30 kg and r is 1.5 x 10^11 m, so
\gamma_{Sun} = \sqrt{ 1 - \left( 1.98 * 10^{-8} \right)} \approx 1 - \left( 0.99 * 10^{-8} \right)
As you can see, the Sun's effect, at Earth's position, is about ten times the Earth's effect, so the Sun's effect will be the one to use when comparing clock rates on Earth to clock rates far out in interstellar space. But even the Sun's effect is very small, about 1 part in 100 million; that means that, relative to a clock far out in interstellar space, a clock anywhere in Earth's orbit about the Sun will run slow by about 1 second in 3.3 Earth years (since there are 30 million seconds in a year) due to the Sun's gravity well.
Regarding your other question, all gravitating bodies contribute to the field felt by an object at any given point. So, for example, the Earth's motion *is* affected by the other planets as well as the Sun. But for many practical problems, the field of one body is so much stronger than all the others that it's all that needs to be considered. For example, if you're in low Earth orbit, the Earth's field is all that is needed, in practical terms, to determine your motion; the effects of all other gravitating bodies (even the Sun and the Moon) are negligible.
Part of the reason for that is simply that the other bodies are either much smaller in mass, or much farther away, or both. However, there's another reason as well. Suppose you're in orbit about the Earth. Since you and the Earth are almost the same distance away from the Sun, you both will respond with almost identical accelerations to the Sun's field. So even though the *force* exerted by the Sun on you and the Earth might be rather large, the *difference* in the force between the two of you is almost zero. And it's the *difference* in force on you and the Earth that determines what effect the Sun will have on your orbit about the Earth.
Something similar applies to the Earth itself in orbit about the Sun. The other planets do exert a gravitational force on the Earth, but they also exert a force on the Sun; the Sun's trajectory "wiggles" depending on where the various planets are in their orbits. The Earth is much farther from the Sun than you are from the Earth if you're in low Earth orbit, so the differences in the force that Jupiter, say, exerts on the Sun and Earth can still be significant; but they're still very small compared to the Sun's force that keeps the Earth in orbit. Also, the planets' forces in general pull in different directions (they aren't all on the same side of the Earth relative to the Sun), so they cancel each other out to a large extent. (This happens to an even larger extent with the forces exerted by objects in the rest of the galaxy; since they are in all directions, the forces they exert on any object in the solar system pretty much sum to zero.)