Time independent perturbation theory

cks
Messages
164
Reaction score
0
H=H0 + lambda * W

lambda << 1 must hold and the matrix elements of W are comparable in magnitude to those of H0.

More precisely, the matrix elements of W are of the same magnitude as the difference between the eigenvalues of H0.

I don't understand what is the meaning of " the matrix elements of W are of the same magnitude as the difference between the eigenvalues of H0".

(the above explanation are obtained from the SChaum's Outlines of Quantum Mechanics)
 
Physics news on Phys.org
the matrix elements of W are of the same magnitude as the difference between the eigenvalues of H0".

Let's say the matrix W=[2.2 3.1 4.1; 4.1 5.3 6.0; 7.3 8.2 9.3] (matlab code)

let's say the eigenvalues of H0 are 1 2 3 4 5 6 7 8 9

the matrix element 2.2 is roughly the same as the difference of the eigenvalues of 3-1. Am I understanding this correctly?

the matrix elements of W are of the "same magnitude"(don't understand what same magnitude means?) as the difference(difference? difference between which eigenvalues, in my example, there are 9 eigenvalues, which minus which is the difference the author is talking?) between the eigenvalues of H0".
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top