Are you sure you mean time independent wave function? The words 'the time independent' in my experience are usually used to preface either 'Schrodinger equation' or Hamiltonian. The time-independent Schrodinger equation is just the Eigenvalue equation for the Hamiltonian operator: ##H|E>=E|E>## and where the Hamiltonian is time-independent, the solutions of this, together with the initial state expressed in terms of those eigenkets, and an easily-identified propagator, are all that is needed to give the wave function at any future point in time.
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles.
Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated...
Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/
by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
I don't know why the electrons in atoms are considered in the orbitals while they could be in sates which are superpositions of these orbitals? If electrons are in the superposition of these orbitals their energy expectation value is also constant, and the atom seems to be stable!