A Time Measurement in Friedman Metric: Physically Possible?

exmarine
Messages
241
Reaction score
11
TL;DR Summary
If a proper time measuring clock goes along for the ride between events, then is such a clock physically possible as the scale factor changes / increases in the Friedman metric?
If a proper time measuring clock goes along for the ride between events, then is such a clock physically possible as the scale factor changes / increases in the Friedman metric? How could any clock have zero spatial changes for that situation?
 
Physics news on Phys.org
Proper time is shown by any clock fixed as a (quasi) point like object that can be considered a "test particle", i.e., whose effect on the gravitational field (metric) can be neglected, i.e., a "point particle" moving through a given "background spacetime". Then the proper time shown by the clock simply is
$$\tau=\int_{\lambda_0}^{\lambda} \mathrm{d} \lambda' \sqrt{g_{\mu \nu}(x(\lambda')) \dot{x}^{\mu}(\lambda') \dot{x}^{\nu}(\lambda')},$$
where ##\lambda## is an arbitrary parameter of the world line of the particle. Note that proper time is only well-defined for time-like curves (and indeed any real-world object can move only along time-like trajectories) and that the expression is general, i.e., you can use any ##\lambda##, and ##\tau## is independent of the choice of this arbitrary world-line parameter, because the integrand is a homogeneous function of degree 1 in ##\dot{x}^{\mu}## (where the dot stands for the derivative with respect to ##\lambda##).
 
  • Like
Likes exmarine
exmarine said:
If a proper time measuring clock goes along for the ride between events, then is such a clock physically possible as the scale factor changes / increases in the Friedman metric? How could any clock have zero spatial changes for that situation?

It seems like you are asking whether real clocks are affected by tidal gravity (that's what I think you mean by "zero spatial changes"), i.e., by geodesic deviation--the fact that geodesics converge or diverge, so any object held together by internal forces, which would have to include any real clock, will have to have its internal forces change along its worldline to compensate for geodesic deviation.

If this is what you are asking, the answer is that, while in principle any real object is affected by geodesic deviation, in practice it is perfectly possible to make real objects, including real clocks, that are small enough for the effects of geodesic deviation on them to be negligible in any spacetime geometry accessible to us.
 
  • Like
Likes vanhees71 and exmarine
PeterDonis said:
It seems like you are asking whether real clocks are affected by tidal gravity
Let me put extra emphasis on ”seems like”. From the OP, it is not at all clear to me what OP is asking. Clarification would be desirable (or just a confirmation that Peter’s interpretation was the intended one).
 
  • Like
Likes exmarine
Thanks for the responses. My question was not about the tidal effects on a physical clock.

It was about how a physical clock could occupy the spatial locations for both events as space expands.

And how do you get from this equation (which I think is the definition of proper time?) (and I can't seem to get the equation to display very well - sorry)

$${(cd\tau)^2}-{a^2(dx'=0)^2}-{a^2(dy'=0)^2}-{a^2(dz'=0)^2}=
{(cdt)^2}-{(adx)^2}-{(ady)^2}-{(adz)^2}$$

to the integral in the first response above? Or please point to some reference for me. I have a lot of textbooks by now, MTW, Zee, and others.

Thanks.
 
exmarine said:
It was about how a physical clock could occupy the spatial locations for both events as space expands.

What "both events" do you mean?

exmarine said:
this equation (which I think is the definition of proper time?)

It's the equation for the spacetime interval in flat spacetime. But the Friedmann spacetime is not flat.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top