Timelike geodesic curves for two-dimensional metric

  • Thread starter Thread starter Fisherlam
  • Start date Start date
  • Tags Tags
    Curves Geodesic
Fisherlam
Messages
10
Reaction score
0
Homework Statement
For the two-dimensional metric ##ds^2 = [dx^2 + c^2dt^2] /(\alpha t^{-2})##, with ##\alpha## being a constant of appropriate dimensions, show that $$\frac{dx/dt}{\sqrt{1-(dx/dt)^2}}$$ is constant and hence, or otherwise, find all timelike geodesic curves.
Relevant Equations
$$L=g_{ab}\dot{x}^a\dot{x}^b $$ $$\frac{\partial L}{\partial x}=\frac{\partial }{\partial u}\left(\frac{\partial L}{\partial \dot{x}}\right) $$
Using EL equation, $$L=\left(\frac{t^2}{\alpha}\dot{x}^2-\frac{c^2t^2}{\alpha}\dot{t}^2\right)^{0.5} \Longrightarrow \mathrm{constant} =\left(\dot{x}^2 -c^2 \dot{t}^2\right)^{-0.5} \left(\frac{t^2}{\alpha}\right)^{0.5} \dot{x}$$.

Get another equation from the metric: $$ds^2=-\frac{c^2t^2}\alpha dt^2+\frac{t^2}\alpha dx^2=c^2d\tau^2\quad\Longrightarrow\quad-\frac{c^2t^2}\alpha t^2+\frac{t^2}\alpha\dot{x}^2=c^2\quad\Longrightarrow\quad\frac{t^2}\alpha=\frac{c^2}{\dot{x}^2-c^2\dot{t}^2}$$

Substitution and set ##c=1##: $$\mathrm{constant}=\left(\dot{x}^2-c^2\dot{t}^2\right)^{-0.5}\left(\frac{t^2}\alpha\right)^{0.5}\dot{x}=\frac{c\dot{x}}{\dot{x}^2-c^2\dot{t}^2}=\frac{\dot{x}}{\dot{x}^2-\dot{t}^2}=\cdots?$$

I think I am close but clearly missing something...
 
Last edited:
Physics news on Phys.org
I've done some digging and if this comes from the Cambridge Part II Physics 2021 past paper, then this is actually a typo. They actually wanted you to find the first conserved quantity which you've obtained from the E-L equations.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top