kamil
- 6
- 0
I find it rather tedious to calculate the eigenvalues of a 3x3 matrix. For example
The \emph{characteristic polynomial} $\chi(\lambda)$ of the<br /> 3$3 \times 3$~matrix<br /> \[ \left( \begin{array}{ccc}<br /> 1 & -1 & -1 \\<br /> -1 & 1 & -1 \\<br /> -1 & -1 & 1 \end{array} \right)\] <br /> is given by the formula<br /> \[ \chi(\lambda) = \left| \begin{array}{ccc}<br /> 1-\lambda & -1 & -1 \\<br /> -1 & 1-\lambda & -1 \\<br /> -1 & -1 & 1-\lambda \end{array} \right|.\]
Now if I do this by develloping the minors I get a cubic equation and I can't solve it without at least 30 minutes. I find it time consuming, especially during an exam.
The \emph{characteristic polynomial} $\chi(\lambda)$ of the<br /> 3$3 \times 3$~matrix<br /> \[ \left( \begin{array}{ccc}<br /> 1 & -1 & -1 \\<br /> -1 & 1 & -1 \\<br /> -1 & -1 & 1 \end{array} \right)\] <br /> is given by the formula<br /> \[ \chi(\lambda) = \left| \begin{array}{ccc}<br /> 1-\lambda & -1 & -1 \\<br /> -1 & 1-\lambda & -1 \\<br /> -1 & -1 & 1-\lambda \end{array} \right|.\]
Now if I do this by develloping the minors I get a cubic equation and I can't solve it without at least 30 minutes. I find it time consuming, especially during an exam.