To prove the "##m^{\text{th}}## Powers Theorem"

  • Thread starter Thread starter brotherbobby
  • Start date Start date
  • Tags Tags
    Algebra Theorem
Click For Summary
The discussion revolves around the "mth Powers Theorem," with the author attempting to verify its identity for specific values of m and n. For m=0.5 and m=2, the left-hand side (L.H.S.) and right-hand side (R.H.S.) of the theorem are calculated, showing L.H.S. < R.H.S. for m=0.5 and L.H.S. > R.H.S. for m=2, suggesting the theorem's validity is uncertain. The author also mentions the possibility of m being negative, specifically m=-0.5, without verification. They request assistance in proving the identities, hinting at using induction on n and referencing Jensen's inequality to support their argument. The conversation highlights the complexity of proving the theorem and the need for further exploration.
brotherbobby
Messages
750
Reaction score
169
Homework Statement
My textbook has listed the following theorem, calling it the "##m^{\text{th}}## Powers Theorem".

If ##a_1, a_2, \dots, a_n## be a set of positive numbers not all equal, then
1. $$\boxed{\frac{\left( \sum_{i=1}^{n} a_i^m \right)}{n} < \left(\frac{\sum_{i=1}^{n}a_i}{n}\right)^m}$$, when ##0<m<1##
2. $$\boxed{\frac{\left( \sum_{i=1}^{n} a_i^m \right)}{n} > \left(\frac{\sum_{i=1}^{n}a_i}{n}\right)^m}$$ when ##m\in \mathbb{R}-(0,1)##
Relevant Equations
I am not sure what the relevant equations to prove the above identities are
1695532956927.png
Statement :
Let me copy and paste the statement as it appears in the text on the right.

Attempt : I could attempt nothing to prove the identity. The best I could do was to verify it for a given value of the ##a's, m, n##. I am not even sure what this identity is called but I will take the author's word for it - "The mth Powers Theorem".

Verify :

(1)
Let some ##m=0.5 (<1)##, ##n=3## and ##a_i's = \{2,3,4\}##. Then the L.H.S. = ##\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{3}## = 1.72. The R.H.S. = ##\left( \frac {2+3+4}{3} \right)^{0.5}## = 1.73. Hence we see that L.H.S < R.H.S.

(2) Let some ##m=2 (>1)##, ##n=3## and ##a_i's = \{2,3,4\}##. Then the L.H.S. =## \frac{2^2+3^2+4^2}{3}## = 9.67. The R.H.S. = ##\left( \frac {2+3+4}{3} \right)^2## = 9. Hence we see that L.H.S > R.H.S.

So the theorem is probably true but we can't be sure.

1695534146367.png
Moreover, let's see on the last line for the stipulation for ##m## which I copy and paste to the right.
This implies that ##m<0##, say ##m= - 0.5##. I haven't verified this case but let's assume that the theorem holds for it.

Request : A hint or help to help prove these two identities would be welcome.
 
Physics news on Phys.org
What about induction on ##n##?
 
Thank you. Let me try.
 
The idea is that ##x^m## is convex and concave for the corresponding values of ##m##. If you draw the graph you can see why it holds. These type of inequalities go by the name Jensen's inequality. The wiki article on it is not bad.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...