To prove the "##m^{\text{th}}## Powers Theorem"

  • Thread starter Thread starter brotherbobby
  • Start date Start date
  • Tags Tags
    Algebra Theorem
brotherbobby
Messages
749
Reaction score
169
Homework Statement
My textbook has listed the following theorem, calling it the "##m^{\text{th}}## Powers Theorem".

If ##a_1, a_2, \dots, a_n## be a set of positive numbers not all equal, then
1. $$\boxed{\frac{\left( \sum_{i=1}^{n} a_i^m \right)}{n} < \left(\frac{\sum_{i=1}^{n}a_i}{n}\right)^m}$$, when ##0<m<1##
2. $$\boxed{\frac{\left( \sum_{i=1}^{n} a_i^m \right)}{n} > \left(\frac{\sum_{i=1}^{n}a_i}{n}\right)^m}$$ when ##m\in \mathbb{R}-(0,1)##
Relevant Equations
I am not sure what the relevant equations to prove the above identities are
1695532956927.png
Statement :
Let me copy and paste the statement as it appears in the text on the right.

Attempt : I could attempt nothing to prove the identity. The best I could do was to verify it for a given value of the ##a's, m, n##. I am not even sure what this identity is called but I will take the author's word for it - "The mth Powers Theorem".

Verify :

(1)
Let some ##m=0.5 (<1)##, ##n=3## and ##a_i's = \{2,3,4\}##. Then the L.H.S. = ##\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{3}## = 1.72. The R.H.S. = ##\left( \frac {2+3+4}{3} \right)^{0.5}## = 1.73. Hence we see that L.H.S < R.H.S.

(2) Let some ##m=2 (>1)##, ##n=3## and ##a_i's = \{2,3,4\}##. Then the L.H.S. =## \frac{2^2+3^2+4^2}{3}## = 9.67. The R.H.S. = ##\left( \frac {2+3+4}{3} \right)^2## = 9. Hence we see that L.H.S > R.H.S.

So the theorem is probably true but we can't be sure.

1695534146367.png
Moreover, let's see on the last line for the stipulation for ##m## which I copy and paste to the right.
This implies that ##m<0##, say ##m= - 0.5##. I haven't verified this case but let's assume that the theorem holds for it.

Request : A hint or help to help prove these two identities would be welcome.
 
Physics news on Phys.org
What about induction on ##n##?
 
Thank you. Let me try.
 
The idea is that ##x^m## is convex and concave for the corresponding values of ##m##. If you draw the graph you can see why it holds. These type of inequalities go by the name Jensen's inequality. The wiki article on it is not bad.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top