- 3,802
- 95
Homework Statement
Are f(x)=2x, x\in R and g(x)=x^2, x>0 topologically conjugate?
i.e. does there exist an h(x) such that
h(g(x))=f(h(x))
The Attempt at a Solution
My professor gave one example in class about finding such a function h which was by guessing it to be equal to xn and subsequently solving and finding the value of n. However, when I tried to apply the same idea to this problem, I come off short.
h(g(x)) = h(x^2)
f(h(x)) = 2h(x)
If we let h(x)=x^n then we want to solve for n in
x^{2n}=2x^n
x^n=2 = h(x)
Hence I find h(x)=2 but this doesn't work. Are there other guesses I could make? Or better yet, is there a more systematic approach to these sorts of problems? Does there even exist an h?