Total energy vs. energy in a finite region

giova7_89
Messages
31
Reaction score
0
I was thinking about the following thing: we know that if the Lagrangian in field theory doesn't depend on the spacetime position, the Noether's theorem says that the stress-energy tensor is conserved, and that T^00 is the energy density at spacetime point x.

Then if one integrates this h(x) on the hypersurface x^0 = t, one gets the total energy at time t (and this total energy (operator) called H(t) doesn't depend on t, etc.). Then, I also think that it must be true that (because of relativistic causality):

[h(x),h(y)] = 0 if (x-y)^2 < 0

With that said, I thought that if I integrate h(x) on a finite region (which I will call R_t) which is contained in the hypersurface x^0 = t, the observable I will get will be "the energy in the region R_t": I will call this observable H(R_t).

Now I calculate the commutator of H(t) with H(R_t). This is equal to:

∫∫d^4xd^4y [h(x),h(y)]

where x belongs to the hypersurface x^0 = t and y belongs to R_t. Now this commutator is equal to 0 because for each couple of x and y one has (x-y)^2 < 0 because x^0 = y^0 = t(except when one has also x^i = y^i, but then one has [h(x),h(x)] which is 0, too).

Then I concluded that these two observables commute, and then the eigenvectors of the total energy must be eigenvectors of the energy contained in R_t.

I trusted this result being correct, and so I wanted to verify it in the free case, where one knows explicitly the eigenvectors of the total energy.

I "charged head on", and tried to apply directly the operator H(R_t) to the vacuum (the one which satisfies H(t)|0> = 0|0> = 0)...), to see which was its eigenvalue, but from my calculations it didn't even seem that the vacuum was an eigenvector of H(R_t).

So I'm beginning to doubt my reasoning about those two commuting observables... Can anyone give me some advice?
 
Physics news on Phys.org
Then I concluded that these two observables commute, and then the eigenvectors of the total energy must be eigenvectors of the energy contained in R_t.
Let's see, how do you know this? That's not what the theorem says - it only says they have a set of eigenvectors in common.

Counterexample: J2 and Jz commute. But an eigenvector of J2 is not necessarily an eigenvector of Jz. And an eigenvector of Jz is not necessarily an eigenvector of J2.
 
Yep, you're right...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Back
Top