Trace of the Exponential of a Square Matrix

Click For Summary
The discussion revolves around calculating the trace of the matrix ##\mathbb U = \exp(\mathbb A)##, where ##\mathbb A## is a specific 4x4 matrix. The eigenvalues of ##\mathbb A## are identified as ##-\frac{\pi}{4}## (with multiplicity 2) and ##\frac{\pi}{4}## (also with multiplicity 2). The correct approach to find the trace involves using the relationship between the matrix exponential and its eigenvalues, leading to the conclusion that the trace of ##\mathbb U## can be derived from the eigenvalues of ##\mathbb A##. An alternative method suggested involves using analytic functions of matrices to simplify the computation. Ultimately, the trace can be calculated directly from the eigenvalues without extensive matrix manipulations.
VSayantan
Messages
57
Reaction score
4

Homework Statement


Find the trace of a ##4\times 4## matrix ##\mathbb U=exp(\mathbb A)##, where
$$\mathbb A = \begin {pmatrix} 0&0&0&{\frac {\pi}{4}}\\ 0&0&{\frac {\pi}{4}}&0\\ 0&{\frac {\pi}{4}}&0&0\\ {\frac {\pi}{4}}&0&0&0 \end {pmatrix}$$

Homework Equations


$$e^{(\mathbb A)}=\mathbb P {e^{\mathbb D}} {\mathbb P}^{-1}$$

The Attempt at a Solution


Eigenvalues of ##\mathbb (A)## are ##{\lambda}_1=-\frac {\pi}{4}##, ##{\lambda}_2=-\frac {\pi}{4}##, ##{\lambda}_3=\frac {\pi}{4}## and ##{\lambda}_4=\frac {\pi}{4}##.
The corresponding eigenvectors are
$${\vec v}_1=\begin {pmatrix} 0\\ -1\\1\\0 \end {pmatrix}$$
$${\vec v}_2=\begin {pmatrix} -1\\ 0\\0\\1 \end {pmatrix}$$
$${\vec v}_3=\begin {pmatrix} 0\\ 1\\1\\0 \end {pmatrix}$$
$${\vec v}_4=\begin {pmatrix} 1\\ 0\\0\\1 \end {pmatrix}$$

So, $$\mathbb P = \begin {pmatrix} 0&-1&0&1\\ -1&0&1&0\\ 1&0&1&0\\ 0&1&0&1 \end {pmatrix}$$

$$Co{\mathbb P} = \begin {pmatrix} 0&2&0&-2\\ 2&0&-2&0\\ -2&0&-2&0\\ 0&-2&0&-2 \end {pmatrix}$$

$${(Co{\mathbb P})}^T = \begin {pmatrix} 0&2&-2&0\\ 2&0&0&-2\\ 0&-2&-2&0\\ -2&0&0&-2 \end {pmatrix}$$

$$det{\mathbb P} = \begin {vmatrix} 0&-1&0&1\\ -1&0&1&0\\ 1&0&1&0\\ 0&1&0&1 \end {vmatrix}$$
Which gives
$$det{\mathbb P} = -4$$

Now, $${\mathbb P}^{-1} = \frac {{(Co{\mathbb P})}^T}{det{\mathbb P}}$$
So, $${\mathbb P}^{-1} = {\frac {1}{- 4}}{\begin {pmatrix} 0&2&-2&0\\ 2&0&0&-2\\ 0&-2&-2&0\\ -2&0&0&-2 \end {pmatrix}}$$

After simplification
$${\mathbb P}^{-1} = \begin {pmatrix} 0&{-\frac {1}{2}}&{\frac {1}{2}}&0\\ {-\frac {1}{2}}&0&0&{\frac {1}{2}}\\ 0&{\frac {1}{2}}&{\frac {1}{2}}&0\\ {\frac {1}{2}}&0&0&{\frac {1}{2}} \end {pmatrix}$$

Then $${{\mathbb P}^{-1}}{\mathbb A}{\mathbb P} = {\begin {pmatrix} 0&{-\frac {1}{2}}&{\frac {1}{2}}&0\\ {-\frac {1}{2}}&0&0&{\frac {1}{2}}\\ 0&{\frac {1}{2}}&{\frac {1}{2}}&0\\ {\frac {1}{2}}&0&0&{\frac {1}{2}}\end {pmatrix}} {\begin {pmatrix} 0&0&0&{\frac {\pi}{4}}\\ 0&0&{\frac {\pi}{4}}&0\\ 0&{\frac {\pi}{4}}&0&0\\ {\frac {\pi}{4}}&0&0&0 \end {pmatrix}}{\begin {pmatrix} 0&-1&0&1\\ -1&0&1&0\\ 1&0&1&0\\ 0&1&0&1\end {pmatrix}}$$
This simplifies, giving the diagonal matrix $${{\mathbb P}^{-1}}{\mathbb A}{\mathbb P} =\begin {pmatrix} -{\frac {\pi}{4}}&0&0&0\\ 0&-{\frac {\pi}{4}}&0&0\\ 0&0&{\frac {\pi}{4}}&0\\ 0&0&0&{\frac {\pi}{4}} \end {pmatrix}$$

Now, I don't know if $$e^{{{\mathbb P}^{-1}}{\mathbb A}{\mathbb P}} =\begin {pmatrix} e^{-{\frac {\pi}{4}}}&0&0&0\\ 0&e^{-{\frac {\pi}{4}}}&0&0\\ 0&0&e^{{\frac {\pi}{4}}}&0\\ 0&0&0&e^{{\frac {\pi}{4}}} \end {pmatrix}$$

If it is so, ##trace {[\mathbb P {e^{\mathbb D}} {\mathbb P}^{-1}]}## looks not ok.

Can anyone suggest any simpler way to handle such a problem?
 
Last edited:
Physics news on Phys.org
VSayantan said:

Homework Equations


$$e^{(\mathbb A)}=e^{({\mathbb P}^{-1} \mathbb A \mathbb P)}$$
This equation is not correct.
 
  • Like
Likes VSayantan
DrClaude said:
This equation is not correct.

Thanks @DrClaude, for pointing out.
It should be $$e^{(\mathbb A)}=\mathbb P {e^{\mathbb D}}{\mathbb P}^{-1}$$
I corrected it.
 
You now need to calculate ##\mathbb P {e^{\mathbb D}}{\mathbb P}^{-1}##.
 
  • Like
Likes VSayantan
DrClaude said:
You now need to calculate ##\mathbb P {e^{\mathbb D}}{\mathbb P}^{-1}##.

$$\mathbb P {e^{\mathbb D}} {\mathbb P}^{-1}=\begin {pmatrix} \cosh {\frac {\pi}{4}}&0&0&\sinh {\frac {\pi}{4}}\\ 0&\cosh {\frac {\pi}{4}}&\sinh {\frac {\pi}{4}}&0\\ 0&\sinh {\frac {\pi}{4}}&\cosh {\frac {\pi}{4}}&0\\ \sinh {\frac {\pi}{4}}&0&0&\cosh {\frac {\pi}{4}} \end {pmatrix}$$

So, I just take its ##trace##?
That's all?
 
VSayantan said:
$$\mathbb P {e^{\mathbb D}} {\mathbb P}^{-1}=\begin {pmatrix} \cosh {\frac {\pi}{4}}&0&0&\sinh {\frac {\pi}{4}}\\ 0&\cosh {\frac {\pi}{4}}&\sinh {\frac {\pi}{4}}&0\\ 0&\sinh {\frac {\pi}{4}}&\cosh {\frac {\pi}{4}}&0\\ \sinh {\frac {\pi}{4}}&0&0&\cosh {\frac {\pi}{4}} \end {pmatrix}$$

So, I just take its ##trace##?
That's all?
Yes, but that is doing it the hard way. An often-easier approach is to note that if the eigenvalues of a ##4 \times 4## matrix ##B## are ##r_1, r_1, r_2, r_2## the general form of ##f(B)## for an analytic function ##f(\cdot)## is
$$ f(B) = E_0 f(r_1) + E_1 f^{\prime}(r_1) + F_0 f(r_2) + F_1 f^{\prime}(r_2) \hspace{3ex}(1)$$
for some fixed matrices ##E_0,E_1,F_0,F_1## that are the same for any function ##f##. Here, I take
$$B = \pmatrix{0 & 0 & 0 & 1\\0 & 0 & 1 &0\\0 &1 & 0 & 0 \\ 1 & 0 & 0 & 0},$$
so that we want to know ##f(B) = \exp( \pi/4 \: B)##.

We can determine these matrices just by using equation (1) on the four functions ##f_0(x) = 1 \Rightarrow f_0(B) = I##, ##f_1(x) = x \Rightarrow f_1(B) = B##, ##f_2(x) = x^2 \Rightarrow f_2(B) = B^2## and ##f_3(x) = x^3 \Rightarrow f_3(B) = B^3##. In this case you have ##r_1 = 1## and ##r_2 = -1##, so that gives four equations:
$$\begin{array}{ccl}
I &=& E_0 + F_0\\
B &=& E_0+E_1 -F_0 + F_1 \\
B^2 &=& E_0 + 2 E_1 + F_0 - 2 F_1 \\
B^3 &=& E_0 + 3 E_1 - F_0 + 3 F_1
\end{array}
$$
You can solve these, and then get
$$ e^{\pi/4 \: B} = E_0 e^{\pi/4} + (\pi/4) E_1 e^{\pi/4} + F_0 e^{-\pi/4} - (\pi/4) F_1 e^{-\pi/4}, $$
so that
$$\text{trace} \left(e^{\pi/4 \: B}\right) = \text{trace} (E_0) e^{\pi/4} + (\pi/4) \text{trace} (E_1) e^{\pi/4} + \text{trace}(F_0) e^{-\pi/4}
-(\pi/4) \text{trace}(F_1) e^{-\pi/4}$$
 
Last edited:
  • Like
Likes VSayantan
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
6
Views
3K
  • · Replies 18 ·
Replies
18
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K