The transformation between uniformly accelerating and inertial observers is given here:
http://en.wikipedia.org/wiki/Rindler_coordinates
If you start with an observer "at rest" in the accelerating frame you have a world line(t,x,y,z)=(t,x_0,0,0)
Transforming that to the inertial coordinates you get: (T,X,Y,Z)=(x_0 \sinh(g t), x_0 \cosh(g t),0,0)
So a similarly accelerating observer, but with different initial velocity will have the worldline: (T,X,Y,Z)=(x_0 \sinh(g t), x_0 \cosh(g t)+v_0 t,0,0)
Transforming this back to the accelerating frame gives: (t,x,y,z)=\left( \frac{1}{g} atan\left( \frac{x_0 \sinh(g t)}{v_0 t+x_0 \cosh(g t)} \right),\sqrt{v_0^2 t^2+x_0^2+2v_0 x_0 t \cosh(g t)},0,0\right)