synoe said:
Thank you ! It was very helpful to understand.
It seems that for the \sigma-action, the variation accidentally coincides with the Lie derivative of the metric.
I have a feeling that this coincidence is necessary in view of the geometry of the target space.
Can I understand in more geometrical way?
There is no “accident”; on the contrary it is a general result in nature. Isometries of the metric (i.e. \mathcal{ L } g_{ a b } = 0) are symmetries of the action. So it is natural to find \delta S \propto \mathcal{ L } g_{ a b }.
May be the following second proof will help you gain more understanding.
Method (2)
First, I would like to show that \partial_{ \mu } X^{ a } is a contravariant vector on the target space manifold (the X-manifold). For that we need the finite form of the transformation
\bar{ X }^{ a } = \bar{ X }^{ a } ( X ; \epsilon ) .
“As a side remark; notice that the first two terms of the Taylor expansion of RHS give us back our infinitesimal (general coordinate) transformations:
<br />
\bar{ X }^{ a } = \bar{ X }^{ a } ( X ; 0 ) + \epsilon \frac{ d }{ d \epsilon } \bar{ X }^{ a } ( X ; \epsilon ) |_{ \epsilon = 0 } + \cdots ,<br />
with X^{ a } = \bar{ X }^{ a } ( X ; 0 ) and the vector field f^{ a } ( X ) is given by f^{ a } ( X ) = \frac{ d }{ d \epsilon } \bar{ X }^{ a } ( X ; \epsilon ) |_{ \epsilon = 0 }”.
So, using the chain rule, we see that
\frac{ \partial \bar{ X }^{ a } }{ \partial \sigma^{ \mu } } = \frac{ \partial \bar{ X }^{ a } }{ \partial X^{ b } } \frac{ \partial X^{ b } }{ \partial \sigma^{ \mu } } .
Thus, \partial_{ \mu } X^{ a } is a contravariant vector on the target space manifold.
The transformation laws of covariant and contravariant vectors (under general coordinate transformations) can be used to define the following infinitesimal variation operator
<br />
\delta^{ g } V_{ a } ( X ) \equiv \bar{ V }_{ a } ( \bar{ X } ) - V_{ a } ( X ) = - \partial_{ a } f^{ b } V_{ b } ,<br />
<br />
\delta^{ g } V^{ a } ( X ) \equiv \bar{ V }^{ a } ( \bar{ X } ) - V^{ a } ( X ) = + \partial_{ b } f^{ a } V^{ b } .<br />
Notice (i) the sign difference, and (ii) how the position of the free index changes. The above laws can be generalized to tensors of arbitrary rank. Also notice that a true scalar on the manifold gets killed by \delta^{ g }, i.e. remains invariant under general coordinate transformations.
Infinitesimal “dragging” on the manifold defines another infinitesimal variation operator: infinitesimal shift of the X-coordinates, i.e., without reorienting the direction of a vector, induces the following infinitesimal variation
<br />
\delta^{ D } V_{ a } ( X ) \equiv \bar{ V }_{ a } ( \bar{ X } ) - \bar{ V }_{ a } ( X ) = f^{ c } \partial_{ c } V_{ a } ,<br />
<br />
\delta^{ D } V^{ a } ( X ) \equiv \bar{ V }^{ a } ( \bar{ X } ) - \bar{ V }^{ a } ( X ) = f^{ c } \partial_{ c } V^{ a } .<br />
That is, the drag operator, \delta^{ D }, has the same action on all tensors (including scalars) on the manifold.
Now, giving that the Lie derivative along the vector field f^{ a } is defined by
\mathcal{ L }_{ f } ( V_{ a } ) \equiv \bar{ V }_{ a } ( X ) - V_{ a } ( x ) ,
we can write the following operator identity
<br />
\delta^{ g }_{ f } ( \cdot ) = \mathcal{ L }_{ f } ( \cdot ) + \delta^{ D }_{ f } ( \cdot ) . \ \ \ (1)<br />
In the calculus of variation, equation (1) is (probably) the most important identity.
Ok, let us apply these ideas on the non-linear sigma model action
<br />
S[ X ] = \alpha \int d^{ 2 } \sigma \ \sqrt{ | h | } h^{ \mu \nu } ( \sigma ) \ L_{ \mu \nu } ( X ) ,<br />
where, the object that concerns us is given by,
L_{ \mu \nu } ( x ) = G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .
Since the action is a scalar on the X-manifold, it is invariant under \delta^{ g }_{ f } for any choice of f^{ a } ( X ). This means that changes in the
covariant tensor G_{ a b } cancel against changes in the
contravariant vectors in \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b }:
<br />
\left( \delta^{ g }_{ f } G_{ a b } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } = - G_{ a b } \ \delta^{ g }_{ f } \left( \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) . \ \ \ (2)<br />
Moreover, \delta^{ D }_{ f } kills the contravariant vector \partial_{ \mu } X^{ a }:
<br />
\delta^{ D }_{ f } ( \partial_{ \mu } X^{ a } ) = f^{ c } \partial_{ c } (\partial_{ \mu } X^{ a } ) = f^{ c } \partial_{ \mu } ( \partial_{ c } X^{ a } ) = f^{ c } \partial_{ \mu } ( \delta^{ a }_{ c } ) = 0 .<br />
This means, from (1), that \delta^{ g }_{ f } and \mathcal{ L }_{ f } have identical actions on the contravariant vector \partial_{ \mu } X^{ a }.
Thus, the infinitesimal variation of L_{ \mu \nu } ( X ) (and therefore the action) induced by an arbitrary variation in the coordinates is of the form
<br />
\delta_{ f } L_{ \mu \nu } ( X ) = \left( \delta^{ D }_{ f } G_{ a b } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } + G_{ a b } \ \delta^{ g }_{ f } \left( \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) . \ \ \ (3)<br />
Using (2), we rewrite (3) as
<br />
\delta_{ f } L_{ \mu \nu } ( X ) = \left[ \left( \delta^{ D }_{ f } - \delta^{ g }_{ f } \right) G_{ a b } \right] \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .<br />
Finally, using the operator identity (1), we find
<br />
\delta_{ f } ( G_{ a b } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } ) = ( - \mathcal{ L }_{ f } G_{ a b } ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .<br />
qed.