Transformations for the non-linear sigma action

synoe
Messages
23
Reaction score
0
For the non-linear sigma action,
<br /> S_G=\frac{1}{4\pi\alpha^\prime}\int d^2\sigma\sqrt{-\gamma(\sigma)}\gamma^{\mu\nu}(\sigma)G_{ij}(X)\partial_\mu(\sigma) X^i\partial_\nu X^j(\sigma),<br />
Let us consider an infinitesimal target space transformation X^\mu\to X^{\prime\mu}(X)=X+\epsilon\xi^\mu(X). The variation of the action under this transformation corresponds to the Lie derivative of the target space metric?:
<br /> \delta_\xi S_G=\frac{\epsilon}{4\pi\alpha^\prime}\int d^2\sigma\sqrt{-\gamma}\gamma^{\mu\nu}\left(\mathcal{L}_\xi G_{ij}\right)\partial_\mu X^i\partial_\nu X^j<br />

Indeed, it seems to be true by a straightforward calculation :
<br /> \delta_\xi S_G=S_G[X+\epsilon\xi]-S_G[X].<br />
But I don't know how to understand this is same to the Lie derivative.

And how about the NS-NS 2-form term?
<br /> S_B=\frac{1}{4\pi\alpha^\prime}\int d^2\sigma\varepsilon^{\mu\nu}B_{ij}\partial_\mu X^i\partial_j X^j=\frac{1}{4\pi\alpha^\prime}\int B_{ij}dX^i\wedge dX^j<br />

The variation of this term may be \delta_\xi S_B=\frac{1}{4\pi\alpha^\prime}\int\left(\mathcal{L}_\xi B_{ij}\right)dX^i\wedge dX^j. But I couldn't verify by the straightforward calculation.

Please teach me the validity that the transformation of the action corresponds to the Lie derivative for the background field G, B.
 
Physics news on Phys.org
Consider how the metric changes under infinitesimal transformation
G_{ i j } ( X ) \rightarrow \bar{ G }_{ i j } ( X + \epsilon \zeta ) = \frac{ \partial X^{ n } }{ \partial \bar{ X }^{ i } } \frac{ \partial X^{ m } }{ \partial \bar{ X }^{ j } } G_{ n m } ( X ) .
Expand both sides and keep terms linear in \epsilon:
\bar{ G }_{ i j } ( X ) - G_{ i j } ( X ) = - \epsilon \left( \zeta^{ k } \ \partial_{ k } G_{ i j } + G_{ i n } \ \partial_{ j } \zeta^{ n } + G_{ n j } \ \partial_{ i } \zeta^{ n } \right) .
So,
\delta G_{ i j } \equiv \bar{ G }_{ i j } ( X ) - G_{ i j } ( X ) = - \epsilon \ \mathcal{ L }_{ \zeta } \left(G_{ i j } ( X ) \right) .
 
Thank you samalkhaiat.

samalkhaiat said:
Consider how the metric changes under infinitesimal transformation
G_{ i j } ( X ) \rightarrow \bar{ G }_{ i j } ( X + \epsilon \zeta ) = \frac{ \partial X^{ n } }{ \partial \bar{ X }^{ i } } \frac{ \partial X^{ m } }{ \partial \bar{ X }^{ j } } G_{ n m } ( X ) .
Expand both sides and keep terms linear in \epsilon:
\bar{ G }_{ i j } ( X ) - G_{ i j } ( X ) = - \epsilon \left( \zeta^{ k } \ \partial_{ k } G_{ i j } + G_{ i n } \ \partial_{ j } \zeta^{ n } + G_{ n j } \ \partial_{ i } \zeta^{ n } \right) .
So,
\delta G_{ i j } \equiv \bar{ G }_{ i j } ( X ) - G_{ i j } ( X ) = - \epsilon \ \mathcal{ L }_{ \zeta } \left(G_{ i j } ( X ) \right) .

Your calculation seems to be just a definition of the Lie derivative, the variation at the same "coordinate point".
My question is why the Lie derivative appears in the \sigma-action in the form of \delta G_{ij}\partial_\mu X^i\partial_\nu X^j when acting X\to X+\epsilon\xi on the \sigma-action.
 
synoe said:
Thank you samalkhaiat.
Your calculation seems to be just a definition of the Lie derivative, the variation at the same "coordinate point".
My question is why the Lie derivative appears in the \sigma-action in the form of \delta G_{ij}\partial_\mu X^i\partial_\nu X^j when acting X\to X+\epsilon\xi on the \sigma-action.

Okay, since I brought this on myself, I will experience the pain and show you how to do it. One can prove it in many different ways, but I will choose the simplest two.
In both methods, my infinitesimal transformation is
\bar{ X }^{ a } = X^{ a } + \epsilon f^{ a } ( X ) . \ \ \ \ (1)
Also, to save time, I will consider the part of the Lagrangian which changes under (1), i.e., G_{ a b } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b }
Method 1:
To first order in \epsilon, we can expand
G_{ a b } ( \bar{ X } ) \partial_{ \mu } \bar{ X }^{ a } \partial_{ \nu } \bar{ X }^{ b } = G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } + \epsilon f^{ d } \partial_{ d } G_{ a b } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } + 2 \epsilon G_{ a b } \partial_{ \mu } X^{ a } \partial_{ c } f^{ b } \partial_{ \nu } X^{ c } .
In the 3rd terms, we make b \leftrightarrow c, and get
\delta \left( G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) = \epsilon \left( f^{ d } \partial_{ d } G_{ a b } + 2 G_{ a c } \partial_{ b } f^{ c } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } . \ \ (2)
Since (in the action) the world-sheet indices ( \mu , \nu ) are contracted with the symmetric world-sheet metric, we can always make \mu \leftrightarrow \nu. This allows us to make the RHS of (2) symmetric with respect to the field indices ( a , b ). So,
\delta \left( G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) = \epsilon \left( f^{ d } \partial_{ d } G_{ ( a b ) } + 2 G_{ c ( a } \partial_{ b ) } f^{ c } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } . \ \ \ (3)
We can also add the following zero to (3):
\left( \partial_{ ( b } G_{ a ) d } - \partial_{ ( a } G_{ b ) d } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } = 0 .
So, (3) becomes
\delta \left( G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) = 2 \epsilon G_{ c ( a } \partial_{ b ) } f^{ c } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } + \epsilon f^{ d } \left( \partial_{ d } G_{ ( a b ) } + \partial_{ ( b } G_{ a ) d } - \partial_{ ( a } G_{ b ) d } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .
Introducing the Christoffel symbols in the second term on the RHS, we get
\delta \left( G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) = 2 \epsilon G_{ c ( a } \partial_{ b ) } f^{ c } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } + 2 \epsilon f^{ d } \Gamma_{ ( a b ) d } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .
Or
\delta \left( G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) = 2 \epsilon \left[ G_{ c ( a } \partial_{ b ) } f^{ c } + G_{ c ( a } \Gamma^{ c }_{ b ) d } f^{ d } \right] \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } = 2 \epsilon \left[ G_{ c ( a } \nabla_{ b ) } f^{ c } \right] \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .
Since \nabla_{ a } G_{ b c } = 0, we arrive at
\delta \left( G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) = 2 \epsilon \nabla_{ ( b } f_{ a ) } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } = - 2 \left[ \mathcal{ L }_{ f } G_{ ab } ( X ) \right] \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .
So, by integrating this over the world-sheet variables, we find
\delta S[ X ] \sim \frac{ - \epsilon }{ 2 } \int d^{ 2 } \sigma \ \sqrt{ | h | } h^{ \mu \nu } ( \sigma ) \ \partial_{ \mu } X^{ a }( \sigma ) \ \partial_{ \nu } X^{ b } ( \sigma ) \ \mathcal{ L }_{ f } G_{ a b } ( X ) .
qed.
Ok, I am now too tired to do the second method. So I will leave it for next time.
 
samalkhaiat said:
Okay, since I brought this on myself, I will experience the pain and show you how to do it. One can prove it in many different ways, but I will choose the simplest two.
In both methods, my infinitesimal transformation is
\bar{ X }^{ a } = X^{ a } + \epsilon f^{ a } ( X ) . \ \ \ \ (1)
Also, to save time, I will consider the part of the Lagrangian which changes under (1), i.e., G_{ a b } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b }
Method 1:
To first order in \epsilon, we can expand
G_{ a b } ( \bar{ X } ) \partial_{ \mu } \bar{ X }^{ a } \partial_{ \nu } \bar{ X }^{ b } = G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } + \epsilon f^{ d } \partial_{ d } G_{ a b } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } + 2 \epsilon G_{ a b } \partial_{ \mu } X^{ a } \partial_{ c } f^{ b } \partial_{ \nu } X^{ c } .
In the 3rd terms, we make b \leftrightarrow c, and get
\delta \left( G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) = \epsilon \left( f^{ d } \partial_{ d } G_{ a b } + 2 G_{ a c } \partial_{ b } f^{ c } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } . \ \ (2)
Since (in the action) the world-sheet indices ( \mu , \nu ) are contracted with the symmetric world-sheet metric, we can always make \mu \leftrightarrow \nu. This allows us to make the RHS of (2) symmetric with respect to the field indices ( a , b ). So,
\delta \left( G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) = \epsilon \left( f^{ d } \partial_{ d } G_{ ( a b ) } + 2 G_{ c ( a } \partial_{ b ) } f^{ c } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } . \ \ \ (3)
We can also add the following zero to (3):
\left( \partial_{ ( b } G_{ a ) d } - \partial_{ ( a } G_{ b ) d } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } = 0 .
So, (3) becomes
\delta \left( G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) = 2 \epsilon G_{ c ( a } \partial_{ b ) } f^{ c } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } + \epsilon f^{ d } \left( \partial_{ d } G_{ ( a b ) } + \partial_{ ( b } G_{ a ) d } - \partial_{ ( a } G_{ b ) d } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .
Introducing the Christoffel symbols in the second term on the RHS, we get
\delta \left( G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) = 2 \epsilon G_{ c ( a } \partial_{ b ) } f^{ c } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } + 2 \epsilon f^{ d } \Gamma_{ ( a b ) d } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .
Or
\delta \left( G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) = 2 \epsilon \left[ G_{ c ( a } \partial_{ b ) } f^{ c } + G_{ c ( a } \Gamma^{ c }_{ b ) d } f^{ d } \right] \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } = 2 \epsilon \left[ G_{ c ( a } \nabla_{ b ) } f^{ c } \right] \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .
Since \nabla_{ a } G_{ b c } = 0, we arrive at
\delta \left( G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) = 2 \epsilon \nabla_{ ( b } f_{ a ) } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } = - 2 \left[ \mathcal{ L }_{ f } G_{ ab } ( X ) \right] \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .
So, by integrating this over the world-sheet variables, we find
\delta S[ X ] \sim \frac{ - \epsilon }{ 2 } \int d^{ 2 } \sigma \ \sqrt{ | h | } h^{ \mu \nu } ( \sigma ) \ \partial_{ \mu } X^{ a }( \sigma ) \ \partial_{ \nu } X^{ b } ( \sigma ) \ \mathcal{ L }_{ f } G_{ a b } ( X ) .
qed.
Ok, I am now too tired to do the second method. So I will leave it for next time.

Thank you ! It was very helpful to understand.
It seems that for the \sigma-action, the variation accidentally coincides with the Lie derivative of the metric.
I have a feeling that this coincidence is necessary in view of the geometry of the target space.
Can I understand in more geometrical way?
 
synoe said:
Thank you ! It was very helpful to understand.
It seems that for the \sigma-action, the variation accidentally coincides with the Lie derivative of the metric.
I have a feeling that this coincidence is necessary in view of the geometry of the target space.
Can I understand in more geometrical way?
There is no “accident”; on the contrary it is a general result in nature. Isometries of the metric (i.e. \mathcal{ L } g_{ a b } = 0) are symmetries of the action. So it is natural to find \delta S \propto \mathcal{ L } g_{ a b }.
May be the following second proof will help you gain more understanding.

Method (2)
First, I would like to show that \partial_{ \mu } X^{ a } is a contravariant vector on the target space manifold (the X-manifold). For that we need the finite form of the transformation
\bar{ X }^{ a } = \bar{ X }^{ a } ( X ; \epsilon ) .
“As a side remark; notice that the first two terms of the Taylor expansion of RHS give us back our infinitesimal (general coordinate) transformations:
<br /> \bar{ X }^{ a } = \bar{ X }^{ a } ( X ; 0 ) + \epsilon \frac{ d }{ d \epsilon } \bar{ X }^{ a } ( X ; \epsilon ) |_{ \epsilon = 0 } + \cdots ,<br />
with X^{ a } = \bar{ X }^{ a } ( X ; 0 ) and the vector field f^{ a } ( X ) is given by f^{ a } ( X ) = \frac{ d }{ d \epsilon } \bar{ X }^{ a } ( X ; \epsilon ) |_{ \epsilon = 0 }”.
So, using the chain rule, we see that
\frac{ \partial \bar{ X }^{ a } }{ \partial \sigma^{ \mu } } = \frac{ \partial \bar{ X }^{ a } }{ \partial X^{ b } } \frac{ \partial X^{ b } }{ \partial \sigma^{ \mu } } .
Thus, \partial_{ \mu } X^{ a } is a contravariant vector on the target space manifold.
The transformation laws of covariant and contravariant vectors (under general coordinate transformations) can be used to define the following infinitesimal variation operator
<br /> \delta^{ g } V_{ a } ( X ) \equiv \bar{ V }_{ a } ( \bar{ X } ) - V_{ a } ( X ) = - \partial_{ a } f^{ b } V_{ b } ,<br />
<br /> \delta^{ g } V^{ a } ( X ) \equiv \bar{ V }^{ a } ( \bar{ X } ) - V^{ a } ( X ) = + \partial_{ b } f^{ a } V^{ b } .<br />
Notice (i) the sign difference, and (ii) how the position of the free index changes. The above laws can be generalized to tensors of arbitrary rank. Also notice that a true scalar on the manifold gets killed by \delta^{ g }, i.e. remains invariant under general coordinate transformations.
Infinitesimal “dragging” on the manifold defines another infinitesimal variation operator: infinitesimal shift of the X-coordinates, i.e., without reorienting the direction of a vector, induces the following infinitesimal variation
<br /> \delta^{ D } V_{ a } ( X ) \equiv \bar{ V }_{ a } ( \bar{ X } ) - \bar{ V }_{ a } ( X ) = f^{ c } \partial_{ c } V_{ a } ,<br />
<br /> \delta^{ D } V^{ a } ( X ) \equiv \bar{ V }^{ a } ( \bar{ X } ) - \bar{ V }^{ a } ( X ) = f^{ c } \partial_{ c } V^{ a } .<br />
That is, the drag operator, \delta^{ D }, has the same action on all tensors (including scalars) on the manifold.
Now, giving that the Lie derivative along the vector field f^{ a } is defined by
\mathcal{ L }_{ f } ( V_{ a } ) \equiv \bar{ V }_{ a } ( X ) - V_{ a } ( x ) ,
we can write the following operator identity
<br /> \delta^{ g }_{ f } ( \cdot ) = \mathcal{ L }_{ f } ( \cdot ) + \delta^{ D }_{ f } ( \cdot ) . \ \ \ (1)<br />
In the calculus of variation, equation (1) is (probably) the most important identity.
Ok, let us apply these ideas on the non-linear sigma model action
<br /> S[ X ] = \alpha \int d^{ 2 } \sigma \ \sqrt{ | h | } h^{ \mu \nu } ( \sigma ) \ L_{ \mu \nu } ( X ) ,<br />
where, the object that concerns us is given by,
L_{ \mu \nu } ( x ) = G_{ a b } ( X ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .
Since the action is a scalar on the X-manifold, it is invariant under \delta^{ g }_{ f } for any choice of f^{ a } ( X ). This means that changes in the covariant tensor G_{ a b } cancel against changes in the contravariant vectors in \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b }:
<br /> \left( \delta^{ g }_{ f } G_{ a b } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } = - G_{ a b } \ \delta^{ g }_{ f } \left( \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) . \ \ \ (2)<br />
Moreover, \delta^{ D }_{ f } kills the contravariant vector \partial_{ \mu } X^{ a }:
<br /> \delta^{ D }_{ f } ( \partial_{ \mu } X^{ a } ) = f^{ c } \partial_{ c } (\partial_{ \mu } X^{ a } ) = f^{ c } \partial_{ \mu } ( \partial_{ c } X^{ a } ) = f^{ c } \partial_{ \mu } ( \delta^{ a }_{ c } ) = 0 .<br />
This means, from (1), that \delta^{ g }_{ f } and \mathcal{ L }_{ f } have identical actions on the contravariant vector \partial_{ \mu } X^{ a }.
Thus, the infinitesimal variation of L_{ \mu \nu } ( X ) (and therefore the action) induced by an arbitrary variation in the coordinates is of the form
<br /> \delta_{ f } L_{ \mu \nu } ( X ) = \left( \delta^{ D }_{ f } G_{ a b } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } + G_{ a b } \ \delta^{ g }_{ f } \left( \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) . \ \ \ (3)<br />
Using (2), we rewrite (3) as
<br /> \delta_{ f } L_{ \mu \nu } ( X ) = \left[ \left( \delta^{ D }_{ f } - \delta^{ g }_{ f } \right) G_{ a b } \right] \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .<br />
Finally, using the operator identity (1), we find
<br /> \delta_{ f } ( G_{ a b } \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } ) = ( - \mathcal{ L }_{ f } G_{ a b } ) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } .<br />
qed.
 
samalkhaiat said:
Moreover, \delta^{ D }_{ f } kills the contravariant vector \partial_{ \mu } X^{ a }:
<br /> \delta^{ D }_{ f } ( \partial_{ \mu } X^{ a } ) = f^{ c } \partial_{ c } (\partial_{ \mu } X^{ a } ) = f^{ c } \partial_{ \mu } ( \partial_{ c } X^{ a } ) = f^{ c } \partial_{ \mu } ( \delta^{ a }_{ c } ) = 0 .<br />

\frac{\partial}{\partial X^a} commutes with \frac{\partial}{\partial\sigma^\mu}? Is it trivial?

samalkhaiat said:
Thus, the infinitesimal variation of L_{ \mu \nu } ( X ) (and therefore the action) induced by an arbitrary variation in the coordinates is of the form
<br /> \delta_{ f } L_{ \mu \nu } ( X ) = \left( \delta^{ D }_{ f } G_{ a b } \right) \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } + G_{ a b } \ \delta^{ g }_{ f } \left( \partial_{ \mu } X^{ a } \partial_{ \nu } X^{ b } \right) . \ \ \ (3)<br />

I couldn't follow this equation. Could you explain in more detail?
 
Last edited:
synoe said:
\frac{\partial}{\partial X^a} commutes with \frac{\partial}{\partial\sigma^\mu}? Is it trivial?
Yes they commute, if they act on X or functions of X. Remember, the set \{ d X^{ a } \} is one-form basis on the X-manifold and \partial_{ \mu } X^{ a } are the components of the pull-back of such one-form: \chi^{ * } ( d X^{ a } ) = \partial_{ \mu } X^{ a } d \sigma^{ \mu }, with \chi is the map from the world-sheet to the X-manifold.
I couldn't follow this equation. Could you explain in more detail?

We assume that an arbitrary variation \delta acts as derivation with non-zero contributions from both terms:
\delta L = ( \delta G_{ a b } ) \ \partial X^{ a } \partial X^{ b } + G_{ a b } \delta ( \partial X^{ a } \partial X^{ b } ) .
Since we only have \delta^{ D } and \delta^{ g } at our disposal, the only equation that gives non-zero contributions from both terms is the one I wrote down. That is \delta G \equiv \delta^{ D } G and \delta ( \partial X \partial X ) \equiv \delta^{ g } ( \partial X \partial X ).
 
Back
Top