B Transforming the Electric Field Measured by an Observer with 4-velocity U

  • B
  • Thread starter Thread starter etotheipi
  • Start date Start date
etotheipi
Hola amigos, I was doing some stuff and got a bit stuck. To transform components of the em tensor between different bases in the minkowski space you can do, just like any other tensor, $$\overline{F}^{\bar{\mu} \bar{\nu}} = \frac{\partial \bar{x}^{\bar{\mu}}}{\partial x^{\mu}} \frac{\partial \bar{x}^{\bar{\nu}}}{\partial x^{\nu}} F^{\mu \nu} = {\Lambda^{\bar{\mu}}}_{\mu}{\Lambda^{\bar{\nu}}}_{\nu} F^{\mu \nu}$$e.g. to transform the ##x^1## component of the electric field, for the traditional case of uniform motion along the ##x^1## direction at ##c\beta \mathbf{e}_1##, then$$\begin{align*}

\overline{E}^{1} = c\overline{F}^{10} = c{\Lambda^{1}}_{\mu} {\Lambda^{0}}_{\nu} F^{\mu \nu} = c{\Lambda^{1}}_{0}{\Lambda^{0}}_{1}F^{01} + c{\Lambda^{1}}_{1}{\Lambda^{0}}_{0}F^{10} + 0 + 0 &= c\beta^2 \gamma^2 \left( -\frac{E^1}{c} \right) + c \gamma^2 \left( \frac{E^1}{c} \right) \\

&= \gamma^2 E^1 (1-\beta^2) = E^1

\end{align*}$$i.e. that ##\overline{E}^1 = E^1##. But then I tried a different method, knowing that the electric field measured by an observer with 4-velocity ##U = \gamma c (\mathbf{e}_0 + \beta \mathbf{e}_1) = c\overline{\mathbf{e}}_0## should be the contraction of the em tensor and the 4-velocity of the observer, i.e. the resulting rank 1 tensor (vector) with one empty slot has spatial components ##{E_U}^i = F^{i\nu} U_{\nu}##. However, when I tried to work this out [for the same scenario as before, with the ##\{ \overline{\mathbf{e}}_{i} \}## coordinate system moving at ##c\beta \mathbf{e}_1## w.r.t. the ##\{ \mathbf{e}_{i} \}## coordinate system], I get$$(E_U)^1 = F^{10} U_0 + F^{11}U_1 = \left( \frac{E^1}{c} \right) \gamma c + 0 = \gamma E^1$$which is different to what I got before. But I don't see why it shouldn't work, because when I evaluate the same contraction in the other coordinate system, I get$$(\overline{E_U})^1 = \overline{F}^{1\nu} \overline{U}_{\nu} = \overline{F}^{1 0} \overline{U}_{0} + 0+ 0 + 0 = \left( \frac{\overline{E}^1}{c} \right) c = \overline{E}^1$$which is fine. So I'm wondering, where I made my mistake in evaluating the contraction of those two tensors in the first coordinate system, or maybe something else is wrong. Thank you

Edit: Actually, maybe writing this out helped to pin down the problem. The ##E_U## is still a 4-vector, so it's components will be different in the two coordinate systems. I guess, in that case, we need to transform the components of ##E_U## to the ##\{ \overline{\mathbf{e}}_{\mu} \}## coordinate system in order to get the components ##\mathbf{E}## measured by the guy with four velocity ##U##...
 
Last edited by a moderator:
  • Like
Likes aliens123 and Dale
Physics news on Phys.org
I think you've got it with the edit.

A more coordinate-free way to put it is that the components of vectors are meaningless. What you measure as the "x component of the electric field" is actually the inner product of the electric field with a unit vector in the x direction. So what your observer with four velocity ##U## measures (the quantity you called ##\overline{ E}^1##) is ##\overline{e}_{(1)}^\mu U^\nu F_{\mu\nu}##, where ##\overline e_{(1)}## is the observer's first spacelike basis vector. Since ##\overline e_{(1)}## isn't (0,1,0,0) in your unbarred coordinates, ##\overline e_{(1)}^\mu U^\nu F_{\mu\nu}\neq U^\nu F_{1\nu}##.
 
Last edited:
  • Like
  • Love
Likes aliens123, PeterDonis and etotheipi
@Ibix thanks, that's a really great way of explaining it, it's clear to me now. 😄 I do like the geometrical point of view a lot. Maybe I'll check the transformation later, but I'm pretty sure it'll work as expected.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top