Translate the statements into set inclusion

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Set
Click For Summary
SUMMARY

This discussion focuses on translating logical statements into set inclusion notation. The participants analyze six statements regarding drowning, fish, swimmers, scientists, humans, and mathematicians, ultimately seeking to deduce whether a drowned mathematician was not a swimmer. The established set definitions include E (drowning), F (fish), S (swimmers), N (scientists), H (humans), and M (mathematicians). The conclusion drawn is that the drowned mathematician can indeed be inferred to be a non-swimmer based on the logical implications of the provided statements.

PREREQUISITES
  • Understanding of set theory and notation
  • Familiarity with logical implications and quantifiers
  • Knowledge of basic mathematical logic
  • Ability to interpret and translate statements into formal logic
NEXT STEPS
  • Study set theory and its applications in logic
  • Learn about logical quantifiers: universal ($\forall$) and existential ($\exists$)
  • Explore formal logic translation techniques
  • Investigate the relationships between sets and their implications in mathematical proofs
USEFUL FOR

This discussion is beneficial for mathematicians, logic enthusiasts, and students studying formal logic or set theory, particularly those interested in the translation of verbal statements into mathematical expressions.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey!

I am looking at the following:

translate the following statements into set inclusion.
(i) Those who drown are not a fish or a swimmer.
(ii) Scientists are human.
(iii) A person who is not a swimmer is a non-swimmer.
(iv) Fish are not human.
(v) There was a case of a drowned mathematician.
(vi) Mathematicians are scientists.

Check if from the statements (i)–(vi)
,,There was a mathematician who was not a swimmer”
can be implied.
I have done the following:

We consider the sets:
E =Set of drowning, F = Set of Fish, S = Set of swimmers, N = Scientists, H = Human, M = Mathematiker

We have then the following:
(i) $x\in E\rightarrow x\notin (F\cup S)$
(ii) $N\subseteq H$ i.e. $x\in N\rightarrow x\in H$
(iii) $x\in H : x\notin S \rightarrow x\in S^c$
(iv) $F\not\subseteq H$
(v) $\exists x \in (E\cap M)$
(vi) $M\subseteq N$

Is everything correct so far? Could I improve something?

The statement ,,There was a mathematician who was not a swimmer” could be formulated as followes, or not? $$\exists x\in M : x\in S^c$$
 
Physics news on Phys.org
mathmari said:
(iv) $F\not\subseteq H$
Hey mathmari!

There can still be a fish that is a human, can't it? 🤔

Everything else looks correct to me, although I'm used to seeing $\forall$ in front of them.

The statement ,,There was a mathematician who was not a swimmer” could be formulated as followes, or not? $$\exists x\in M : x\in S^c$$
Yes, but that was not the question was it? 🤔
 
Klaas van Aarsen said:
There can still be a fish that is a human, can't it? 🤔

Everything else looks correct to me, although I'm used to seeing $\forall$ in front of them.

So we have the following:
(i) $\forall x\in E\rightarrow x\notin (F\cup S)$
(ii) $N\subseteq H$ i.e. $\forall x\in N\rightarrow x\in H$
(iii) $\forall x\in H : x\notin S \rightarrow x\in S^c$
(iv) What do you mean by "There can still be a fish that is a human" ?
(v) $\exists x \in (E\cap M)$
(vi) $M\subseteq N$

Is everything correct except (iv) ? :unsure:
Klaas van Aarsen said:
Yes, but that was not the question was it? 🤔

Could you give me a hint for that? :unsure:
 
mathmari said:
So we have the following:
(i) $\forall x\in E\rightarrow x\notin (F\cup S)$
(ii) $N\subseteq H$ i.e. $\forall x\in N\rightarrow x\in H$
(iii) $\forall x\in H : x\notin S \rightarrow x\in S^c$
(iv) What do you mean by "There can still be a fish that is a human" ?
(v) $\exists x \in (E\cap M)$
(vi) $M\subseteq N$

I think it should be:
(i) $x\in E\rightarrow x\notin (F\cup S)$
(ii) $N\subseteq H$ i.e. $x\in N\rightarrow x\in H$
(iii) $\forall x\in H : x\notin S \rightarrow x\in S^c$
(iv) --
(v) $\exists x \in (E\cap M)$
(vi) $M\subseteq N$

As for (iv), you had $F\not\subseteq H$ for "fish are not human".
Suppose $F=\{\text{fish}, \text{human}\}$ and $H=\{\text{human}\}$.
Then $F\not\subseteq H$ is satisfied isn't it? But there is a fish that is a human, which contradicts the desired statement. 🤔

Could you give me a hint for that?
We want to deduce that there was a mathematician who was not a swimmer from the given statements.
Perhaps we can begin with (v) that says that there was a case of a drowned mathematician?
Can we apply the other statements to find out that this drowned mathematician was not a swimmer? 🤔
 
Klaas van Aarsen said:
We want to deduce that there was a mathematician who was not a swimmer from the given statements.
Perhaps we can begin with (v) that says that there was a case of a drowned mathematician?
Can we apply the other statements to find out that this drowned mathematician was not a swimmer? 🤔

(v) There was a case of a drowned mathematician.
(i) Those who drown are not a fish or a swimmer.
(vi) Mathematicians are scientists.
(ii) Scientists are human.
In the case of a fish we have from (iv) that fish are not human. Contradiction.
But we cannot conclude that this drowned mathematician was not a swimmer, right? :unsure:
 
I believe (iv) should be $F\cap H=\varnothing$, or $\forall x\in F: x\not\in H$, or $x\in F\to x\not\in H$.

mathmari said:
(v) There was a case of a drowned mathematician.
(i) Those who drown are not a fish or a swimmer.
(vi) Mathematicians are scientists.
(ii) Scientists are human.
In the case of a fish we have from (iv) that fish are not human. Contradiction.
But we cannot conclude that this drowned mathematician was not a swimmer, right?

Let's try to split up "Those who drown are not a fish or a swimmer."
It is the same as:
"Those who drown are NOT (a fish OR a swimmer)."
"(Those who drown are NOT a fish) AND (Those who drawn are NOT a swimmer)."
"Those who drown are NOT a fish" and "Those who drawn are NOT a swimmer."

Since there was a mathematician who drowned, we can conclude that they were not a swimmer, can't we? 🤔
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K