Transpose of Matrix as Linear Map

chingkui
Messages
178
Reaction score
2
What are the relations between a matrix H and its transpose H^T? I am not asking about the relations between the coefficients, I am asking the relations as linear maps (H: F^m->F^n; H^T: F^n->F^m). I am not sure exactly how I should pose the question actually, but I am thinking there is some deeper relations than between their coefficients, like for example, can we say something about the kernel and image of H^T if we know something about the kernel and image of H? What can we say about HH^T: F^n->F^n and H^TH: F^m->F^m?
(F is an arbitrary field)
 
Physics news on Phys.org
row rank=column rank, that pretty much tells you everything, and the fact that the images and kernels are related to the rows and cols of H's implies soemthing obvious since the row/cols of the transpose are the cols/rows of the original. (i haven't said which way round since it depends on what side you make your matrices act)
 
Last edited:
the transpose represents the pullback map on linear functions.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top