Trapezoidal Rule: Find T8 & M8 for ∫cos(x^2)dx from 1 to 0

  • Thread starter Thread starter pureouchies4717
  • Start date Start date
pureouchies4717
Messages
98
Reaction score
0
hey guys... i kinda forgot how to do this

question is: find the approximations T8 and M8 for integral of cos(x^2)dx from 1 to 0

now my question is whether or not that 8 means that n=8

and also, is this right?

id do the following:

n/2[f(0)+f(.2)+f(.4)+f(.6)+f(.8)+f(1)]

and id use the degree mode on my calculator

is that how i set it up?
 
Last edited:
Physics news on Phys.org
arg can someone help me? please
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top