MHB Triangle Challenge: Prove 2.5<PQ/QR<3

AI Thread Summary
In triangle PQR, which is right-angled at R, the median from Q bisects the angle between sides QP and the angle bisector of angle Q. The challenge is to prove that the ratio of PQ to QR lies between 2.5 and 3. Participants in the discussion express appreciation for the insightful solutions provided, particularly highlighting the contributions of MarkFL. The conversation emphasizes collaborative problem-solving and the sharing of different approaches to the proof. The challenge remains open for further solutions and insights from other contributors.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In a triangle $PQR$ right-angled at $R$, the median through $Q$ bisects the angle between $QP$ and the bisector of $\angle Q$.

Prove that $2.5<\dfrac{PQ}{QR}<3$.
 
Mathematics news on Phys.org
My solution:

Please refer to the following diagram:

View attachment 3974

We see that:

$$\sec^2(4\alpha)=\left(\frac{\overline{PQ}}{\overline{QR}}\right)^2$$

And we also find:

$$4\tan^2(3\alpha)+1=\left(\frac{\overline{PQ}}{\overline{QR}}\right)^2$$

And so this implies:

$$f(\alpha)=4\tan^2(3\alpha)-\sec^2(4\alpha)+1=0$$

Using a numeric root-finding technique, we find the smallest positive root (the only applicable root) is:

$$\alpha\approx0.29630697598921511618$$

And thus:

$$\sec(4\alpha)\approx2.6589670819169940791$$

Hence:

$$2.5<\frac{\overline{PQ}}{\overline{QR}}<3$$
 

Attachments

  • trianglechallenge.png
    trianglechallenge.png
    2 KB · Views: 104
Thanks, MarkFL for participating and the really smart and intelligent way to prove this challenge! :cool:

I want to share the solution of other too:

If we use MarkFL's provided diagram, the Sine rule tells us, both from triangles $PQS$ and $QSR$ that

$\dfrac{QS}{\sin P}=\dfrac{PS}{\sin \theta}$

$\dfrac{QS}{\sin 90^{\circ}}=\dfrac{RS}{\sin 3\theta}$

Since $PS=RS$, we obtain $\sin 3\theta \sin P=\sin \theta$. However, $P=90^{\circ}-4\theta$, thus we get $\sin 3\theta \cos 4\theta=\sin \theta$.

Note that

$\dfrac{PQ}{QR}=\dfrac{1}{\cos 4\theta}=\dfrac{\sin 3\theta}{\sin \theta}=3-4\sin^2 \theta$

This shows that $\dfrac{PQ}{QR}<3$.

Using $\dfrac{PQ}{QR}=3-4\sin^2 \theta$, it's easy to compute $\cos 2\theta=\dfrac{\dfrac{PQ}{QR}-1}{2}$.

Hence,

$\dfrac{QR}{PQ}=\cos 4\theta=\dfrac{1}{2}\left(\dfrac{PQ}{QR}-1\right)^2-1$

Suppose $\dfrac{PQ}{QR}\le 2.5=\dfrac{5}{2}$. Then $\left(\dfrac{PQ}{QR}-1\right)^2\le \dfrac{9}{4}$ and $\dfrac{QR}{PQ}\ge \dfrac{2}{5}$.

Thus,

$\dfrac{2}{5}\le \dfrac{QR}{PQ}=\dfrac{1}{2}\left(\dfrac{PQ}{QR}-1\right)^2-1\le \dfrac{9}{8}-1=\dfrac{1}{8}$, which is absurd.

We conclude then that $\dfrac{QR}{PQ}>\dfrac{5}{2}$ and the proof is done.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top