OK, first, I'm a grown man, this is not a homework problem. Well, in a way it is, since I'm teaching myself, but anyway.(adsbygoogle = window.adsbygoogle || []).push({});

I have finally graduated to trig and the six basic functions and how they relate. What I'm having a problem with is this:

sin/1+cos = 1-cos/sin

How is this true? I've done every algebraic manipulation I can think of, but I can't see how this can be. I'll show what I have come up with, using the fact that sin x =y/r and cos x =x/r.

It should break down like this:(y/r)/1+(x/r) = [1-(x/r)]/(y/r)

Now, here's how I approached it: Left of the equals sign(y/r)/1+(x/r) = y/(r+x)

Then right of the equals sign:[1-(x/r)]/(y/r) = (r-x)/y

So when does y/(r+x) ever equal (r-x)/y? Thanks for any help provided. And I hope this wasn't too simple for you guys to consider answering.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Trig problem

**Physics Forums | Science Articles, Homework Help, Discussion**