Trig substitution integral(need a check on the solution)

Click For Summary
The integral I = ∫ x^3/√(16-x^2) dx from 0 to 2√3 was evaluated using trigonometric substitution, but the user encountered imaginary numbers due to incorrect variable transformations. It was pointed out that a simpler substitution, u = 16 - x^2, would suffice for this integral. Additionally, the user mistakenly converted back to x with incorrect limits, leading to confusion. Despite these issues, the final answer of 40/3 was confirmed as correct. The discussion highlighted the importance of proper substitution and maintaining correct limits in integral calculus.
vande060
Messages
180
Reaction score
0

Homework Statement



this is the first problem like this I've ever tried so take it easy!:redface:

evaluate the integral

I = ∫ x^3/√(16-x^2) dx from 0 to 2√3

The Attempt at a Solution



- π/2 < ϑ < π/2
x = 4sinϑ , dx = 4cosϑdϑ

*x = 2√3, x/4 = sinϑ , sinϑ = √3/2 , ϑ = π/3
x = 0 sinϑ = 0 , ϑ = 0

4cosϑ = √(16-x^2)

I = ∫ (4sinϑ)^3 * 4cosϑdϑ /4cosϑ

I = ∫ (4sinϑ)^3 dϑ

I = 64 ∫ sin^3ϑ dϑ

I = 64 ∫ (1-cos^2ϑ)*sinϑ dϑ

u = cosϑ
du = -sinϑ

I = -64 ∫ (1-u^2)du
I = -64( cosϑ - cos^3ϑ/3) + C

converting back to x
sinϑ = x/4
cosϑ = √(x^2 -16)/4

I = -64{[ √(x^2 -16)/4] - [√(x^2 -16)/4]^3/3]} from 0 to π/3

i think i made a mistake because i get imaginary numbers here

maybe i wasnt supposed to convert back to x, but change the solve in an integral set to theta bounds and expressed in theta like below

I = -64( cosϑ - cos^3ϑ/3) + C from 0 to pi/3

-64[( 1/2 - 1/24) - (1 - 1/3)] = 40/3
 
Last edited:
Physics news on Phys.org
i) You actually don't need to use a trig substitution here. u=16-x^2 will actually do the job. ii) If you do, then if sin(x)=x/4 then cos(x)=sqrt(16-x^2)/4. Not the x^2-16 thing. That's where your imaginaries are coming from. And iii) If you've changed the variable back to x then the limits are 0 to 2*sqrt(3), not the theta limit of pi/3. Actually a lot of the rest of it is correct, which is good. But I didn't check every line.
 
Dick said:
i) You actually don't need to use a trig substitution here. u=16-x^2 will actually do the job. ii) If you do, then if sin(x)=x/4 then cos(x)=sqrt(16-x^2)/4. Not the x^2-16 thing. That's where your imaginaries are coming from. And iii) If you've changed the variable back to x then the limits are 0 to 2*sqrt(3), not the theta limit of pi/3. Actually a lot of the rest of it is correct, which is good. But I didn't check every line.

i actually just realized that before i read your post, so is that last line (40/3) right
 
vande060 said:
i actually just realized that before i read your post, so is that last line (40/3) right

If your final answer is 40/3, yes, I think that's right. I didn't actually check your details to the end.
 
Dick said:
If your final answer is 40/3, yes, I think that's right. I didn't actually check your details to the end.

thanks a lot everything is clearer now
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
21K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
12
Views
2K