Trigonometric Substitution problem

frosty8688
Messages
126
Reaction score
0
1. ∫\frac{\sqrt{x^{2}-4}}{x} dx, x=2secθ, dx=2secθtanθ dθ



2. \sqrt{x^{2}-a^{2}},sec^{2}θ-1=tan^{2}θ



3. \sqrt{x^{2}-4}=\sqrt{4sec^{2}θ-4}=\sqrt{4(1+tan^{2}θ)-4}=\sqrt{4tan^{2}θ}=2\left|tanθ\right|=2tanθ;∫\frac{\sqrt{x^{2}-4}}{x}dx=∫\frac{2tanθ}{2secθ}dθ=\frac{ln\left|secθ\right|}{ln\left|secθ+tanθ\right|}+C=ln\left|secθ\right|-ln\left|secθ+tanθ\right|+C;∫\frac{\sqrt{x^{2}-4}}{x}dx=ln\left|\frac{x}{2}\right|-ln\left|\frac{x}{2}+\frac{\sqrt{x^{2}-4}}{2}\right|+C=ln\left|x\right|-ln\left|2\right|-ln\left|x+\sqrt{x^{2}-4}\right|+ln\left|2\right|+C. Please tell me what I did wrong.
 
Physics news on Phys.org
What happened to the substitution for dx in terms of dθ?
 
I see what you mean. Ok, here is what I have after the dx substitution: \int\frac{\sqrt{x^{2}-4}}{x}dx = \int\frac{2tanθ}{2secθ}2secθtanθdθ = 2\int tan^{2}θdθ
 
Which is: 2\int(sec^{2}θ-1)dθ = 2(tanθ-θ)+C
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top