MHB Lowest Positive $p$: Solving $\cos(p\sin \, x) = \sin (p\cos\, x)$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Positive
AI Thread Summary
The discussion focuses on finding the lowest positive value of \( p \) that satisfies the equation \( \cos(p\sin x) = \sin(p\cos x) \). By analyzing the equation, various cases are considered based on the signs of \( \sin x \) and \( \cos x \), leading to four candidate formulas for \( p \). The candidates depend on the intervals of \( x \) within \( [0, 2\pi] \) and involve choosing integer values for \( k \) to minimize \( p \). Ultimately, the analysis reveals that the optimal value of \( p \) varies depending on the specific range of \( x \).
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
find lowest positive p such that $\cos(p\sin \, x) = \sin (p\cos\, x)$
 
Mathematics news on Phys.org
kaliprasad said:
find lowest positive p such that $\cos(p\sin \, x) = \sin (p\cos\, x)$
[sp]If $\sin\alpha = \cos\beta$ then the possible values for $\beta$ are $\beta = \pm\bigl(\frac\pi2 - \alpha\bigr) + 2k\pi.$ Putting $\alpha = p\cos x$ and $\beta = p\sin x$, we get $p\sin x = \pm\bigl(\frac\pi2 - p\cos x\bigr) + 2k\pi,$ from which $$p = \frac{\pm\pi + 4k\pi}{2(\sin x \pm\cos x)},$$ where $k$ is an integer, and the $\pm$ sign in the numerator must be the same as the one in the denominator.

We want to choose the values of $\pm$ and $k$ that will give the minimal positive value for $p$. The correct choice will depend on $x$, and we may assume that $x$ lies in the interval $[0,2\pi].$

Look at the case of the $+$ signs first, so that $p = \frac{\pi + 4k\pi}{2(\sin x + \cos x)}.$ The denominator is positive when $x\in \bigl[0,\frac34\pi\bigr) \cup \bigl(\frac74\pi,2\pi\bigr]$ and in that case the smallest positive value for the numerator clearly occurs when $k=0$, giving $p = \frac{\pi}{2(\sin x + \cos x)}.$ But when $x\in \bigl(\frac34\pi,\frac74\pi\bigr)$ the denominator is negative, so the numerator must also be negative. The value of $k$ that minimizes $p$ is then $k=-1$, and $p = \frac{-3\pi}{2(\sin x + \cos x)}.$

A similar analysis of the case of the $-$ signs shows that we should take $k=0$ if $x\in \bigl[0,\frac14\pi\bigr) \cup \bigl(\frac54\pi,2\pi\bigr]$, and $k=1$ if $x\in \bigl(\frac14\pi,\frac54\pi\bigr).$

Thus we have four possible candidates for the optimal value of $p$, as follows: $$(1)\qquad p = \tfrac{\pi}{2(\sin x + \cos x)} \text{ for } x\in \bigl[0,\tfrac34\pi\bigr) \cup \bigl(\tfrac74\pi,2\pi\bigr],$$ $$(2)\qquad p = \tfrac{-3\pi}{2(\sin x + \cos x)} \text{ for } x\in \bigl(\tfrac34\pi,\tfrac74\pi\bigr),$$ $$(3)\qquad p = \tfrac{-\pi}{2(\sin x - \cos x)} \text{ for } x\in \bigl[0,\tfrac14\pi\bigr) \cup \bigl(\tfrac54\pi,2\pi\bigr],$$ $$(4)\qquad p = \tfrac{3\pi}{2(\sin x - \cos x)} \text{ for } x\in \bigl(\tfrac14\pi,\tfrac54\pi\bigr).$$

Trying to decide which of those candidates actually gives the best result is frankly a bit of a nightmare. It is useful to find the crossover points, where two of the four formulas are equal. For example, formulas $(1)$ and $(4)$ are equal when $ \tfrac{\pi}{2(\sin x + \cos x)} = \tfrac{3\pi}{2(\sin x - \cos x)}$, which simplifies to $\tan x = -2.$ If I have not made any mistakes then the final values for $p$ come out like this, where $\theta = \arctan2$:

If $0\leqslant x \leqslant \pi-\theta$ then $p = \tfrac{\pi}{2(\sin x + \cos x)}$.

If $\pi-\theta \leqslant x \leqslant \pi$ then $p = \tfrac{3\pi}{2(\sin x - \cos x)}$.

If $\pi \leqslant x \leqslant \pi + \theta$ then $p = \tfrac{-3\pi}{2(\sin x + \cos x)}$.

If $\pi+\theta \leqslant x \leqslant 2\pi$ then $p = \tfrac{-\pi}{2(\sin x - \cos x)}$.

[/sp]
 
kaliprasad said:
find lowest positive p such that $\cos(p\sin \, x) = \sin (p\cos\, x)$
my solution:
let $0\leq x\leq 2\pi$
$cos(p sin x)=sin(p cos x)$
let $y=pcosx$
we have :$siny=cos(\dfrac{\pi}{2}-y)$---(A)
or $sin y=cos(\dfrac{3\pi}{2}+y)$---(B)
from (A):$psinx=\dfrac{\pi}{2}-y$
$\therefore p=\dfrac{\pi}{2(sinx+cosx)}\geq \dfrac {\pi}{2\sqrt 2 }>0$
from (B):$psinx=\dfrac{3\pi}{2}+y$
$\therefore p=\dfrac{3\pi}{2(sinx-cosx)}\geq \dfrac {3\pi}{2\sqrt 2 }>0$
because we want to find the lowest positive $p>0$
we get $p=\dfrac{\pi}{2\sqrt 2}=\dfrac {\sqrt 2 \pi}{4}$
 
Last edited:
I agree with Albert's solution if $x$ is allowed to vary. I read the question as implying that $x$ is fixed.
 
My solution
we have
$\cos(p\sin\, x) = \sin (p\cos\,x)= \cos (\frac{\pi}{2} - p\cos\,x)$
hence
$p\sin \,x = \frac{\pi}{2} - p \cos \,x$ (other values shall given -ve / larger p)
hence
$p(\cos \ , x + \sin\, x) = \frac{\pi}{2}$
or $\sqrt{2}p( \sin \frac{\pi}{4} \cos \, x + \cos \frac{\pi}{4} \sin \, x) = \frac{\pi}{2}$
or $\sqrt{2}p( \sin ( x + \frac{\pi}{4}) = \frac{\pi}{2}$
the largest value of $\sin ( x + \frac{\pi}{4})$ is 1 hence smallest positive $p$ is $\frac{\pi}{2\sqrt{2}}$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top