Trivial (?) alg. geometry problem

  • Thread starter Thread starter Kalidor
  • Start date Start date
  • Tags Tags
    Geometry
Kalidor
Messages
68
Reaction score
0
Trivial (!?) alg. geometry problem

Homework Statement


Consider Y=Q_1,Q_2,\ldots,Q_r \subset \mathbb{A}^n, a finite set of r different points. What are the generators of the ideal I(Y)

The Attempt at a Solution



Knowing that I(Q_i)=(X_1-Q_{i,1},\ldots,X_n-Q_{i,n}) and so on, my guess would be that the solution is something like
(\prod_{k=1}^r f_{k,i}), 1 \leq i \leq n with f_{k,i} \in I(Q_k)

It seems kind of messed. Any ideas?
 
Physics news on Phys.org


My notation is too messy?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top