- 3,802
- 95
What is wrong with my proof?
Let \theta=cos^{-1}x-\frac{\pi}{2}
Then cos\theta=cos\left(cos^{-1}x-\frac{\pi}{2}\right)
RHS=xcos\frac{\pi}{2}-sin(cos^{-1}x)sin\frac{\pi}{2}
=-\sqrt{1-x^2}
Therefore \theta=cos^{-1}(-\sqrt{1-x^2})
\theta=\pi-cos^{-1}\sqrt{1-x^2}
Hence cos^{-1}x-\frac{\pi}{2}=\pi-cos^{-1}\sqrt{1-x^2}
So finally, cos^{-1}x+cos^{-1}\sqrt{1-x^2}=\frac{3\pi}{2}
Except this is untrue for all values except x=-1. I'm guessing I probably made a substitution which is valid for only certain values. Inverse trig seems to do that a lot to me
Let \theta=cos^{-1}x-\frac{\pi}{2}
Then cos\theta=cos\left(cos^{-1}x-\frac{\pi}{2}\right)
RHS=xcos\frac{\pi}{2}-sin(cos^{-1}x)sin\frac{\pi}{2}
=-\sqrt{1-x^2}
Therefore \theta=cos^{-1}(-\sqrt{1-x^2})
\theta=\pi-cos^{-1}\sqrt{1-x^2}
Hence cos^{-1}x-\frac{\pi}{2}=\pi-cos^{-1}\sqrt{1-x^2}
So finally, cos^{-1}x+cos^{-1}\sqrt{1-x^2}=\frac{3\pi}{2}
Except this is untrue for all values except x=-1. I'm guessing I probably made a substitution which is valid for only certain values. Inverse trig seems to do that a lot to me

Last edited: