lukaszh
- 32
- 0
Hello,
could you help me with some true false questions about matrices?
First
If \mathbf{A}=\mathbf{B}-\mathrm{i}\mathbf{C} is hermitian matrix \mathbf{B},\mathbf{C} are real, then \mathbf{B},\mathbf{C} are anti-symmetric matrices. True? False?
My solution
If \mathbf{A} is hermitian, then \mathbf{A}^{\mathrm{H}}=\mathbf{A} so (\mathbf{B}-\mathrm{i}\mathbf{C})^{\mathrm{H}}=\mathbf{B}^{\mathrm{H}}-(\mathrm{i}\mathbf{C})^{\mathrm{H}}=\mathbf{B}^{\mathrm{T}}+i\mathbf{C}^{\mathrm{T}}. It implies the fact \mathbf{B}^{\mathrm{T}}+i\mathbf{C}^{\mathrm{T}}=\mathbf{B}-\mathrm{i}\mathbf{C}. \mathbf{B} is symmetric and \mathbf{C} is anti-symmetric. FALSE
Second
If A is diagonalizable and its eigenvalues are \{\lambda_1,\lambda_2,\cdots,\lambda_n\}, then \prod_{k=1}^{n}(x-\lambda_k)=0 has n different solutions
My solution
Matrix is diagonalizable, then \lambda_i\ne\lambda_j for i\ne j. So polynomial has n different soln's. TRUE
Thank you very much for your help...
could you help me with some true false questions about matrices?
First
If \mathbf{A}=\mathbf{B}-\mathrm{i}\mathbf{C} is hermitian matrix \mathbf{B},\mathbf{C} are real, then \mathbf{B},\mathbf{C} are anti-symmetric matrices. True? False?
My solution
If \mathbf{A} is hermitian, then \mathbf{A}^{\mathrm{H}}=\mathbf{A} so (\mathbf{B}-\mathrm{i}\mathbf{C})^{\mathrm{H}}=\mathbf{B}^{\mathrm{H}}-(\mathrm{i}\mathbf{C})^{\mathrm{H}}=\mathbf{B}^{\mathrm{T}}+i\mathbf{C}^{\mathrm{T}}. It implies the fact \mathbf{B}^{\mathrm{T}}+i\mathbf{C}^{\mathrm{T}}=\mathbf{B}-\mathrm{i}\mathbf{C}. \mathbf{B} is symmetric and \mathbf{C} is anti-symmetric. FALSE
Second
If A is diagonalizable and its eigenvalues are \{\lambda_1,\lambda_2,\cdots,\lambda_n\}, then \prod_{k=1}^{n}(x-\lambda_k)=0 has n different solutions
My solution
Matrix is diagonalizable, then \lambda_i\ne\lambda_j for i\ne j. So polynomial has n different soln's. TRUE
Thank you very much for your help...