(Hoping not to divert the thread... but replying to a side comment by PeroK...)
PeroK said:
At the most basic level you are asking: why on Earth would anyone ever come up with the idea of analysing a possible linear relationship between time and space coordinates?
And our answer is, well no one did for several hundred years, but why not try? Maybe someone in 1850 did try but was too appalled by the consequences and didn't even publish!?
If anyone was able to do that, it would have been Felix Klein.
https://de.wikisource.org/wiki/Felix_Klein
In 1872, he developed his Erlangen Program
https://en.wikipedia.org/wiki/Erlangen_program
which essentially laid the foundations for Minkowski spacetime.
(Klein essentially unified elliptic, hyperbolic, and Euclidean geometry via projective geometry.
The scheme was extended to the "Cayley-Klein Geometries" (9 in 2-dimensions),
of which Minkowski spacetime, Galilean spacetime, and the DeSitter spacetimes are included (but apparently not interpreted physically).
Here's a curious comment from Toretti's
Philosophy of Geometry from Riemann to Poincaré, p.129
https://books.google.com/books?id=EcLrCAAAQBAJ&printsec=frontcover&dq=torretti&hl=en&sa=X&ved=0ahUKEwio6bP235bhAhUkUt8KHZydCAIQ6AEIKDAA#v=onepage&q=finite sequence of rotations&f=false
The passage in Klein that Toretti refers to is
on p.189 of Klein's
Vorlesungen uber Nicht-Euklidische Geometrie (1926)
(which [if i decoded the preface correctly] is partly based on lectures from 1892 and 1893
[possibly these handwritten lectures
https://archive.org/details/nichteuklidische01klei ],
plus additional material the editors put together). In that passage,
(update: here are the figures Klein refers to... looks like worldlines in Minkowski and Galilean spacetimes. Note how the lines bunch up near the [light-cone] edge in 114.)
I transcribed the section
Felix Klein (1926 posthumous) said:
Die Erfahrung zeigt uns, daß wir stets durch eine endliche Anzahl derartiger Drehungen in die Nähe der Ausgangslage zurückkommen, ja sogar über sie hinausgelangen können. Diese Eigenschaft ist aber bei der hyperbolischen und parabolischen Messung von Winkeln nicht vorhanden, da wir dort durch die entsprechende Abtragung untereinander kongruen ter Winkel nie über bestimmte Grenzlagen herauskommen können (vgl. die Abb. 114 und 120). In einer Maßbestimmung, die in der Außenwelt anwendbar ist, muß also sowohl die räumliche, wie auch die ebene Winkelmessung elliptisch sein.
and fed it into Google translate (bolding mine)
Google Translate of Klein said:
Experience shows us that we can always come back by a finite number of such rotations in the vicinity of the starting position, and even get beyond them. However, this property is not present in the hyperbolic and parabolic measurement of angles, since we can never get beyond certain boundary layers there by the corresponding removal of congruent angles (see Figures 114 and 120). In a measure that is applicable in the outside world, so both the spatial, as well as the level angle measurement must be elliptical.
In hindsight, the
hyperbolic and parabolic measurement of angles [between radial lines... thought of as inertial worldlines] refer to rapidity in Minkowski spacetime [so velocity v=c\tanh\theta ] and in Galilean spacetime [here, where, it turns out, Galilean-rapidity coincides with velocity [up to a constant carrying units] ].
So, the point is:
the foundations were there.. but maybe not yet realized in the physical world.
(As I said, these lectures were published posthumously in 1926 and drawn on material from 1892 and 1893 onward...
but it's not clear how far onward. Was this passage before 1905 (when Einstein published) or 1908 (when Minkowski formulated "spacetime geometry")?)From the Wikisource link, it might be interesting to read the transcription of
https://de.wikisource.org/wiki/Über_die_geometrischen_Grundlagen_der_Lorentzgruppe (1910)
(which Google Translate translates to "About the geometric foundations of the Lorentz group")
which can be read via Google Translate [in the Chrome browser].
My $0.02.
(Sorry for intruding.)