Two Differential Equation Problems

JM00404
Messages
7
Reaction score
0
Please see the PDF attatchment to view the problems. Thank you for your time.
 

Attachments

Physics news on Phys.org
For 1:
What diff.eq does \psi(x)e^{-a_{1}\frac{x}{n}} fulfill?
 
JM00404 said:
Please see the PDF attatchment to view the problems. Thank you for your time.

The first one (too late I know but anyway):

Let's do a simple one first:

y^{''}+a_1y^{'}+a_2y=0

or:

(D^2+a_1D+a_2)y=0

or:

f(D)y=0

Now, use the exponential shift:

e^{cx}f(D)y=f(D-c)[e^{cx}y]

so up there, multiply by:

e^{a_1x/2}

so:

e^{a_1x/2}f(D)y=f(D-a_1/2)[e^{a_1x/2}\phi]=0

can you finish it?

f(D-a_1/2)=(D-a_1/2)^2+a_1(D-a_1/2)+a_2
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top