I Two-dimensional vector representation

AI Thread Summary
A method to represent a two-dimensional vector field with zero divergence and non-zero curl is discussed, specifically in the form of w = a ∇b. It is noted that if a is constant, the vector field becomes conservative and rotation-free, which contradicts the requirement for non-zero curl. The conversation highlights that a and b can be variable functions of x and y to allow for such representation. A negative example illustrates the contradiction of having a non-zero curl with a constant vector field, while a positive example suggests modifying the field outside a unit circle to achieve the desired properties. The discussion concludes that if a is treated as a vector, the representation aligns with concepts from magnetic fields and electric current density.
Gribouille
Messages
8
Reaction score
0
Hi,

Is there a method to represent a known two-dimensional vector field w of two coordinates x and y with zero divergence and non-zero curl as
$$ \vec{w}(x,y) = a \nabla b \, , \hspace{4mm} \nabla \cdot \vec{w} = 0 \, , \hspace{4mm} \nabla \times \vec{w} = f(x,y) \, ?$$
How would one proceed to calculate a and b?
 
Mathematics news on Phys.org
Gribouille said:
Hi,

Is there a method to represent a known two-dimensional vector field w of two coordinates x and y with zero divergence and non-zero curl as
$$ \vec{w}(x,y) = a \nabla b \, , \hspace{4mm} \nabla \cdot \vec{w} = 0 \, , \hspace{4mm} \nabla \times \vec{w} = f(x,y) \, ?$$
How would one proceed to calculate a and b?

No, I don't think so. Assuming a is constant, your vector field can be written as a gradient, which means it is conservative and therefore rotation-free, contradicting your assumption.
 
Thanks. a is not constant but depends on x and y, just as b.
 
Unless I made a mistake it is possible sometimes but not in general.

As negative example, consider ##\vec w = \vec c \times \vec r## where r is the position and c is a constant. Consider the unit circle. To get the direction right, ##\nabla b## has to be non-zero but going in a circle. It can't do that without having a rotation, contradiction.

As positive non-trivial example, use the w from above within the unit circle, then continue outside in a symmetric way with zero curl outside, and then add ##d=(10,0)## to it. Now our vector field doesn't have closed circles any more. We can introduce a suitable potential that gets the direction of the gradient right, and then fix the magnitude via a variable ##a##.
 
if a is a vector and w =a×∇b, then yes. w then is the magnetic field, a is a unit vector normal to x-y plane, b is the magnetic vector potential, and f(x,y) is the electric current density that creates the magnetic field.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-sln2)+e^(-sln3)+e^(-sln4)+... , Re(s)>1 If we regards it as some function got from Laplace transformation, and let this real function be ζ(x), that means L[ζ(x)]=ζ(s), then: ζ(x)=L^-1[ζ(s)]=δ(x)+δ(x-ln2)+δ(x-ln3)+δ(x-ln4)+... , this represents a series of Dirac delta functions at the points of x=0, ln2, ln3, ln4, ... , It may be still difficult to understand what ζ(x) means, but once it is integrated, the truth is clear...

Similar threads

Back
Top