Two Events A & B: Is r+s >1 Possible? - Brendan's Query

  • Thread starter Thread starter brendan
  • Start date Start date
  • Tags Tags
    Events
AI Thread Summary
The discussion centers on the possibility of two events A and B having probabilities r and s such that r + s > 1. It is clarified that if A and B are mutually exclusive, then their combined probability cannot exceed 1. However, if A and B are not mutually exclusive, it is possible for r + s to exceed 1, as demonstrated with examples involving die rolls. The key takeaway is that while r + s can be greater than 1, the probability of either event occurring, p(A + B), must always remain less than or equal to 1. This distinction is crucial for understanding probability theory.
brendan
Messages
64
Reaction score
0
I have read a question which has

Two events A and B such that p(A) = r and p(B) = s with r,s >0 and
r + s > 1

My querry is about r + s > 1 is this possible ? I thought that it had to be < or = to 1


regards
Brendan
 
Mathematics news on Phys.org


Suppose you have a die, and you throw it once. Let A be "the outcome is 1, 2, 3, 4 or 5" and B "the outcome is 3, 4, 5 or 6".

Note however, that though p(A) + p(B) > 1, you always have p(A + B) <= 1 (with p(A + B) being the probability of A or B happening).
 


brendan said:
I have read a question which has

Two events A and B such that p(A) = r and p(B) = s with r,s >0 and
r + s > 1

My querry is about r + s > 1 is this possible ? I thought that it had to be < or = to 1


regards
Brendan

If A and B are "mutually exclusive" events, then P(A+ B)= P(A)+ P(B). Since P(A+B) cannot be larger than 1, neither can P(A)+ P(B).

But if A and B are NOT "mutually exclusive" that is not true. Suppose you roll a single die. Let A be "the number on the die is larger than 2" and B is "the number on the die is even"
Since there are 4 numbers on the die larger than 2, P(A)= 4/5= 2/3. Since there are 3 even numbers on the die, P(B)= 3/6= 1/2. P(A)+ P(B)= 2/3+ 1/2= 7/6> 1.

Of course, that is NOT P(A+B). The numbers on the die that are "either larger than 2 or even" are 2, 3, 4, 5, 6 so P(A+ B)= 5/6.

"Larger than 3 or even" are not mutually exclusive. 4 and 6 are both "larger than 3" and even. P(A and B)= 2/6= 1/3 so P(A+ B)= P(A)+ P(B)- P(A and B)= 2/3+ 1/2- 1/3= 7/6- 2/6= 5/6.
 


Thanks very much guys.
I see that it makes sense that they could both equal > 1 if both are not mutually exclusive.

Now I just have to prove it !
 


CompuChip said:
Note however, that though p(A) + p(B) > 1, you always have p(A + B) <= 1 (with p(A + B) being the probability of A or B happening).

Don't you mean:

p(A + B) <= P(a)+P(b)

which is a triangle inequality.
 


Yes, that is also true. Actually I think it is something like
p(A \cup B) = p(A) + p(B) - p(A \cap B)
which shows both the triangle inequality and the statement about mutually exclusive events (where A \cap B is empty).

However, the point I wanted to stress is that the probability of A or B is always less than or equal to one, as you'd expect, contrary to the probability of A plus the probability of B; therefore p(A) + p(B) is not the same as p(A + B).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top