Two masses tied together on frictionless ramp

AI Thread Summary
The discussion revolves around calculating the tension in the ropes connecting two masses on a frictionless ramp inclined at 29°. The user attempts to analyze the forces acting on the masses using a force diagram and applies the equation F=ma to determine the acceleration. They express difficulty in identifying the forces acting on the lower mass (M2) and their components along the x and y axes. The conversation highlights the need for clarity in resolving forces to find the required tensions. Properly analyzing the forces is essential for solving the problem effectively.
Jtappan
Messages
95
Reaction score
0

Homework Statement



Two boxes with different masses M1 = 1.3 kg and M2 = 2.2 kg are tied together on a frictionless ramp surface which makes an angle = 29° with the horizontal (see the figure below). (the figure is essentially two boxes tied together by a rope and then another rope tying the right box to the ramp. the left box(the bottom one) is M2 and the top box is M1.

What is the tension in the rope connecting the two boxes?
______ N
What is the tension in the rope connecting the first box to the ramp?
______ N




Homework Equations



F=ma

The Attempt at a Solution



I have tried to do the force diagram where the left is -y and the right is +x. Once I have drawn the force diagram then I put in gravity as the acceleration downward. Then I do 9.8/cos61 to find the acceleration downward at the specific angle. Then I put it into the f=ma equation to find the force downward at the angle for each box. Then I get stuck...
 
Physics news on Phys.org
Choose the x-axis as parallel to the plane... and y-axis as perpendicular to the plane.

What are the forces acting on M2? what are the components of these forces along the x-axis and y-axis?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top