I Two Observers Moving Opposite Dir Rel to Each Other

  • I
  • Thread starter Thread starter Sang-Hyeon Han
  • Start date Start date
  • Tags Tags
    Relative
Sang-Hyeon Han
Messages
9
Reaction score
1
Hello guys. I have a question for one of postulates of relativity. Consider there are three observers (called A, B, and C) in x-direction only. A is at rest. B is moving to the left relative to A with velocity 0.7c. C is to the right relative to A with velocity 0.7c. Then when A sees B or C, they can not move faster than c. It's correct right? However, when B and C see each other, is it possible that their (relative) velocities are faster than c (maybe 1.4c) or not?
 
Physics news on Phys.org
No. When B and C look at each other, they will see the other moving away at a speed grater than 0.7c but less than c. It will be about 0.94c.
 
Last edited:
  • Like
Likes Sang-Hyeon Han
.Scott said:
No. When B and C look at each other, they will see the other moving away at a speed grater than 0.7c but less than c. It will be about 0.94c.
How can we get that value??
 
Sang-Hyeon Han said:
How can we get that value??
Using the 'relativistic velocity addition' formula:

245387


You will find that, no matter what values you use for the two spaceships, the receding velocity will not exceed c.

eg: If you set v=-0.7c and u' as 0.7c, the result will be 0.94c.

Note: this is not just for relativistic velocities. It will give accurate results at any speed (even stoned koala speed) it's just at - at anything less than relativistic velocities - the denominator becomes one plus (nearly) zero and we get the common v+u' velocity we know and love.
 

Attachments

  • 1560952265900.png
    1560952265900.png
    934 bytes · Views: 264
Last edited:
  • Like
Likes Sang-Hyeon Han
Ahh I understand. many thanks guys!
 
The relative speed of two objects is the speed of one object in the rest frame of the other object. It's best to work with manifestly covariant objects. In this case these are the proper four-velocities, which are in your case
$$u_A=\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad u_B=\frac{1}{\sqrt{1-0.7^2}} \begin{pmatrix}1 \\ -0.7 \\ 0 \\ 0 \end{pmatrix}, \quad u_C=\frac{1}{\sqrt{1-0.7^2}} \begin{pmatrix}1 \\ 0.7 \\ 0 \\ 0 \end{pmatrix}.$$
Now you don't need a Lorentz transformation to get the relative speed of each observer since you can get this with Minkowski products between these four-velocities.

For observer A, at rest in the computational frame, it's easy to see that you get the time-component of the four-velocities of B and C just by the Minkowski product of their four-velocities with ##u_A##:
$$(\gamma_B)_A =u_A \cdot u_B=\frac{1}{\sqrt{1-0.7^2}}.$$
This is the ##\gamma## factor of B measured by A who is at rest in the computational frame. From the ##\gamma## factor you get back ##\beta=|\vec{\beta}|=|\vec{v}/c|## simply by
$$(\beta_B)_A=\sqrt{1-\frac{1}{(\gamma_B)_A^2}}=0.7.$$
That's trivial, but the magic of covariant treatments is that since it's working with invariants, it's a general valid formula, i.e., to get the speed of ##B## as measured by ##C## you simply calculate the ##\gamma## factor of ##B## as measured by ##C## via the Minkowski product of the four-velocities,
$$(\gamma_B)_C=u_C \cdot u_B=\frac{1}{1-0.7^2}(1+0.7^2)=149/51$$
and thus the relative speed
$$(\beta_B)_C=\sqrt{1-1/(\gamma_B)_C^2} \simeq 0.940.$$
 
  • Like
Likes Sang-Hyeon Han
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top