Two paralel streams of electrons.

  • Thread starter Thread starter alpha358
  • Start date Start date
  • Tags Tags
    Electrons
alpha358
Messages
9
Reaction score
0
Consider two parallel streams of electrons in vacuum. Each stream moves with constant velocity and carries a current. According to classical electrodynamics parallel and same direction currents attract each other.
The problem is that I can't see how relativistic length contraction can cause attraction in this situation.

example.png
 

Attachments

  • example.png
    example.png
    2.6 KB · Views: 492
Last edited:
Physics news on Phys.org
Does classical electrodynamics perhaps say the attractive force becomes equal to the repulsive force when the electrons are moving at the speed of light?


Because in relativity:

Transformed repulsive force = repulsive force / gamma.

Transformed repulsive force approaches zero, when speed of electrons approaches speed of light.
 
alpha358 said:
Consider two parallel streams of electrons. Each stream carries a current.

Ate you asking about two parallel electron beams in a vacuum, or streams of electrons flowing through a current-carrying wire or other conductor?
 
alpha358 said:
Consider two parallel streams of electrons. Each stream carries a current. According to classical electrodynamics parallel and same direction currents attract each other.
The problem is that I can't see how relativistic length contraction can cause attraction in this situation.
In this circumstance the Lorentz force will never be attractive. As v increases it will become less repulsive, but never attractive. I encourage you to work it out for yourself to confirm.

To understand length contraction's role in reducing the attraction consider the following. Let's say that the spacing between electron's is constant in our frame so that the charge density is constant and I is proportional to v. As v increases the distance between electrons in the electron's frame increases. This is required so that it will length contract down to the correct distance in our frame. That effect causes the acceleration in the electron's rest frame to reduce. Then, that acceleration is further reduced in our frame due to time dilation.
 
jartsa said:
Does classical electrodynamics perhaps say the attractive force becomes equal to the repulsive force when the electrons are moving at the speed of light?

Thanks now I see. I have overlooked the fact that observer at rest will see dominating Coulomb repulsive force and magnetic attractive force increasing with electrons velocity. Sum of these forces is never attractive in this case.
 
Last edited:
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top