Two quotient groups implying Cartesian product?

jostpuur
Messages
2,112
Reaction score
19
Assume that G is some group with two normal subgroups H_1 and H_2. Assuming that the group is additive, we also assume that H_1\cap H_2=\{0\}, H_1=G/H_2 and H_2=G/H_1 hold. The question is that is G=H_1\times H_2 the only possibility (up to an isomorphism) now?
 
Physics news on Phys.org
I think if the representation G= H_1 \times H_2 [/ itex] is unique, then G can be expressed as a semidirect product.
 
I think I managed to prove the claim by using the projections G\to H_1 and G\to H_2 given by the assumptions, under the assumption \#G<\infty, which I did not mention above. Since I was the one asking this, there is probably no need for me to post the full proof, and this will remain as a challenge to the rest. The case \#G=\infty remains open.
 
Last edited:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
14
Views
3K
Replies
13
Views
561
Replies
3
Views
428
Replies
1
Views
2K
Back
Top