Two short electrodynamics questions

insynC
Messages
66
Reaction score
0
1. Invariants in field strength

The first part of the question asked you to calculate the Lorentz scalars by contracting the field strength tensor (F) and it's dual (G): FF, GG and FG (index's omitted) and formed ±2(B²-E²/c²) and -4/c(E.B). The next part asked:

Are there any other invariants quadratic in the field strengths (but not depending on any higher derivatives of the potentials? Why or why not? [Hint: count parameters].

Equations: http://en.wikipedia.org/wiki/Electromagnetic_tensor

Attempt: I'm pretty sure the answer is no, as the invariants that can be formed from the field strength tensors are FF, GG, FG and GF (which gives nothing new). But I'm not sure how to show it formally. Is there are reason no other Lorentz scalars can be formed involving E & B?

2. Parity and time reversal of the Riemann-Silberstein vector

Question: What are the properties of the Riemann-Silberstein vector under parity and time reversal?

Equations: F(x,t) = E(x,t) + iB(x,t)

Attempt: Under parity reversal E -> -E and B -> B. Thus F -> -F*. This to me doesn't obviously make F a vector or pseudovector, have I made a mistake or is this another type of properties vectors can have or the extension of one of the other properties to complex numbers.

As for time reversal E -> E and B -> -B, so F -> F*. Again I'm not sure how to interpret this result.

Thanks for any help!
 
Physics news on Phys.org
Any thoughts?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top