Two spin-1 objects: Addition of Angular Momenta

  • Thread starter Thread starter unscientific
  • Start date Start date
  • Tags Tags
    Addition Angular
unscientific
Messages
1,728
Reaction score
13

Homework Statement



Suppose in a container there are two spin-1 objects, A and B. It is found that ##J=j_1+j_22## and ##M=m_1+m_2=1##. What is the probability when ##J_z## is measured for A, values of m=0, m=-1 and m=+1 will be obtained?

mbid09.png

Homework Equations


The Attempt at a Solution



|j,j> = |2,2> = |(1,1)_A>|(1,1)_B>

Starting:
J_{-}|2,2> = \left(J_{-}^A + J_{-}^B\right)|(1,1)_A>|(1,1)_B>
\sqrt{2(2+1)-2(2-1)}|2,1> = \sqrt{1(1+1)-1(1-1)}\left(|(1,0)_A>|(1,1)_B> + |(1,1)_A>|(1,0)_B>\right)
|2,1> = \frac{1}{\sqrt{2}}\left(|(1,0)_A>|(1,1)_B> + |(1,1)_A>|(1,0)_B>\right)

For m=0, probability = 1/2
For m=1, probability = 1/2
For m=-1, probability = 0

Is this right?
 
Physics news on Phys.org
I would say yes, that is correct. So essentially you are writing the coupled state |2,1> in the uncoupled basis. Since j1+j2=1+1 = 2 = J and m1+m2=1, you know that the only possible values for the mi are 0 and 1, since any other combination does not give a sum of 1.

So the coupled state |J,M> decomposed in the uncoupled basis |j1j2m1m2> → |m1m2> would usually consist of 9 terms for fixed j1 and j2 both equal to 1. But by the above restriction, the only possibilities are |0,1> and |1,0>, as you found.

So the decomposition must be |2,1> = c1|0,1> + c2|1,0>. For normalized states, |c1|2+ |c2|2 = 1 => c1 = c2 = 1/√2.

Thought I would give a more descriptive solution, which helps in understanding what you are actually doing.
 
Last edited:
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top