Thanks for the response Halls, I hope the following is not to long winded. The bit I think is most important is in bold.
HallsofIvy said:
I don't know what you mean by "if I have two vectors and three components".
Sorry, I thought components were the little 'bits'/'parts' that make up a vector (e.g. a
1 in the vector <a
1, a
2, a
3>). I think they may be called elements (as suggested by wiki).
HallsofIvy said:
Do you mean you are given two vectors in a three dimensional vector space and asked to determine the subspace they span?.
Pretty much, that is what I was trying to establish, but in a generalised form. There isn't a specific question, as it's for conceptual understanding. I figured that the number of vectors in a set will determine the type of subspace: If I have two vectors, regardless of how many elements they have (e.g. 2: <a,b> or 3: <a,b,c>), the maximum subspace they can give is a plane; even if they have three elements, the two vectors can only form a plane. If I have three vectors with four elements (e.g. <a, b, c, d> and <e, f, g, h> and <k, m, n, p>), then I can only obtain a three dimensional subspace in four-dimensions. So the maximum extent of the subspace is dependent on the number of vectors in the set (as well as the number of ‘parts’).
Is this true? I have determined (with varying levels of success!) the span of a number of specific vectors, and I find I can’t represent all of R3 using two vectors.
If I could establish that ANY two linearly independent vectors each with two elements can span all of R2, then I know that a set containing three 2-tuple (containing two elements?) vectors will be linearly dependent, one will be a linear combination of the others. IF, I don’t believe it’s true, but IF I could represent the whole of R3 using ANY two linearly independent, 3-tuple vectors, then I know that I cannot have three linearly independent vectors; but, by the same reasoning, if I have three 3-tuple vectors, that are linearly independent, then the previous case cannot be true, and two linearly independent 3-tuple vectors will be insufficient to span all of R3.
But this is all rests on the assumption that if a set of n linearly independent vectors span some space, then ALL the sets of n vectors that are linearly independent vectors also span the same space. (e.g. if two linearly independent 2-tuple vectors span R2, then ALL sets of two linearly independent 2-tuple vectors span R2).
HallsofIvy said:
Of course, if the two vectors are not independent, that is, if one is a multiple of the other, then they both point along the same line and so the subspace is a line through the origin.
For example, if the two vectors are <1, 0, 1> and <3, 0, 3>, any vector in their span is of the form s<1, 0, 1>+ t<3, 0, 3>= <s+ 3t, 0, s+ 3t>. Now we have x= s+ 3t, y= 0, z= s+ 3t. We have immediately x= z which "looks" like a line but y is always 0 whereas just "x= z" implies y can be anything. We would have to write that as x= t, y= 0, z= t for parameter t.
Just to clarify, this IS a line, but it could be mistaken for a plane, as y=anything, allows no restriction in this direction: it would be of the form x + 0y – z = 0, if it was a plane?
Many thanks, I hope this is not too long, it was difficult to make it more succint.