U-Substitution in Calculus: Solving ∫(t+1)2/t2 Problems

  • Thread starter Thread starter fallen186
  • Start date Start date
fallen186
Messages
41
Reaction score
0

Homework Statement


∫(t+1)2/t2


Homework Equations





The Attempt at a Solution


I don't see any possible way to substitute.
∫(t2+2t+1)/t2
 
Physics news on Phys.org
You don't need to do any substitution, just split up the fraction into three different terms, so you can evaluate three terms rather easily.
 
∫(t+1)^2/t^2

=
∫ (t^2+2t+1 ) / t^2 dt

=

∫ t^2/t^2 dt + ∫2t/t^2 dt + 1/t^2 dt

take it from there
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top