Unbound particle through potential

omiros
Messages
29
Reaction score
0
1. Homework Statement
A particle with mass m moving in the positive x -direction (i.e. from left to right) is incident on a potential step of height V0 at x = 0 so that the potential experienced by the particle is;
V(x) = 0 for x < 0 and V(x) = V0 for x ≥ 0
2. Homework Equations

Determine the time-independent wave function for the particle in the case where the particle energy, E, is greater than V0. This case corresponds to the solution for an ‘unbound’ particle (E > V0). Write your wave functions using complex notation; let the amplitudes of the incident, reflected and transmitted waves be CI, CR and
CT respectively. Define the wavenumber, k, in the region x < 0 and the wavenumber
k' in the region x ≥ 0 .

3. The Attempt at a Solution
ψ(x) = CI*eikx + CR*e-ikx for x < 0 (is probably the first part of the equation).

My main problem is what to do with the second one, as the particle is constantly 'under the influence' of the potential V0 and at the same time I have to find CT when the wave has not been exactly transmitted so the equation can't just be CT*eikx(in my point of view)
 
Physics news on Phys.org
The solution on the left side of the step is ##\psi(x)=Aexp\left(\frac{i\sqrt{2mE}x}{\hbar}\right)+ Bexp\left(-\frac{i\sqrt{2mE}x}{\hbar}\right)## and the solution on the right side of the step is ##\psi(x)=Cexp\left(\frac{i\sqrt{2m(E-V_{0})}x}{\hbar}\right)+ Dexp\left(-\frac{i\sqrt{2m(E-V_{0})}x}{\hbar}\right)##. Start by determining the conditions that the constants ##A,B,C,D## must satisfy so that ##\psi## and its first derivative are continuous at ##x=0##.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top