Uncertainty Principle mechanics

terp.asessed
Messages
126
Reaction score
3
Can one use uncertainty principle for Classical mechanic wave and still get the same equation for Quantum mechanics, as in (root-mean square uncertainty of position) (" of momentum) > hbar/2? It's just that V(x) [Potential equation] is same for both Classical and Quantum mechanics so I wonder if the principle applies too.
 
Physics news on Phys.org
No, you can't becouse the uncertainty principle comes from the mathematical tools used in q.m. which aren't the same of classical mechanic, so position and momentum are defined differently (they are operators and not simply vectors). This seems a simple "mathematical trick", but is proven by several experiments.
 
HUP can be derived by the dirac notation in combination with cauchy schwarz inequality. And as Diracnoation is QM representation and not a classical rhere is no uncertainty principle in classical mechanics. Classical mechanics is a deterministic theory.
 
Thanks for the info, but could you expand on what you mean by:

moriheru said:
the dirac notation in combination with cauchy schwarz inequality
 
A superposition (sum) of waves has the same uncertainty principle regardless of whether they are classical waves or QM waves, when described in terms of wavenumber versus position (##\Delta k \Delta x \ge \frac{1}{2}##) or frequency versus time (##\Delta \omega \Delta t \ge \frac{1}{2}##).

The frequency versus time uncertainty is well known in signal processing: a pulse with width ##\Delta t## contains a range of frequencies ##\Delta \omega## at least big enough to satisfy the uncertainty relation.

What makes QM waves different is that for them, wavenumber (or wavelength) and frequency are associated with momentum and energy: ##p = \hbar k = \frac{p}{\lambda}## and ##E = \hbar \omega = hf##. This is not true for classical waves.
 
I can give you the deriviation, if you ask specifically, but to elaborate what I said before without going into detail of the deriviation:
You substitute ket and bra terms into the cauchy schwarz inequaltiy which gives you a new expression from which you can derive the HUP, which gives you the general UP and by substituting [X,P]=-ih(bar) into the general form you get the HUP.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top